These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22586222)

  • 1. Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: altered virtual electrode polarizations and conduction delay in the peri-infarct zone.
    Rantner LJ; Arevalo HJ; Constantino JL; Efimov IR; Plank G; Trayanova NA
    J Physiol; 2012 Sep; 590(18):4537-51. PubMed ID: 22586222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunnel propagation following defibrillation with ICD shocks: hidden postshock activations in the left ventricular wall underlie isoelectric window.
    Constantino J; Long Y; Ashihara T; Trayanova NA
    Heart Rhythm; 2010 Jul; 7(7):953-61. PubMed ID: 20348028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vulnerability to electric shocks in the regionally-ischemic ventricles.
    Rodríguez B; Tice B; Blake R; Gavaghan D; Trayanova N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2280-3. PubMed ID: 17946101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization.
    Anderson C; Trayanova N; Skouibine K
    J Cardiovasc Electrophysiol; 2000 Dec; 11(12):1386-96. PubMed ID: 11196563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.
    Ashihara T; Constantino J; Trayanova NA
    Circ Res; 2008 Mar; 102(6):737-45. PubMed ID: 18218982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia.
    Rodríguez B; Tice BM; Eason JC; Aguel F; Trayanova N
    Heart Rhythm; 2004 Dec; 1(6):695-703. PubMed ID: 15851241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological effects of monophasic and biphasic stimuli in normal and infarcted dogs.
    Wharton JM; Richard VJ; Murry CE; Dixon EG; Reimer KA; Meador J; Smith WM; Ideker RE
    Pacing Clin Electrophysiol; 1990 Sep; 13(9):1158-72. PubMed ID: 1700392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of the upper limit of vulnerability is different for monophasic and biphasic shocks: implications for the determination of the defibrillation threshold.
    Behrens S; Li C; Franz MR
    Pacing Clin Electrophysiol; 1997 Sep; 20(9 Pt 1):2179-87. PubMed ID: 9309741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of enhanced shock-induced arrhythmogenesis in the rabbit heart with healed myocardial infarction.
    Li L; Nikolski V; Wallick DW; Efimov IR; Cheng Y
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1054-68. PubMed ID: 15879480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac intramural electrical mapping reveals focal delays but no conduction velocity slowing in the peri-infarct region.
    Trew ML; Engelman ZJ; Caldwell BJ; Lever NA; LeGrice IJ; Smaill BH
    Am J Physiol Heart Circ Physiol; 2019 Oct; 317(4):H743-H753. PubMed ID: 31419152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lidocaine on shock-induced vulnerability.
    Li L; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S237-48. PubMed ID: 14760929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of mechanoelectric feedback in vulnerability to electric shock.
    Li W; Gurev V; McCulloch AD; Trayanova NA
    Prog Biophys Mol Biol; 2008; 97(2-3):461-78. PubMed ID: 18374394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of transmural ventricular heterogeneities in cardiac vulnerability to electric shocks.
    Maharaj T; Blake R; Trayanova N; Gavaghan D; Rodriguez B
    Prog Biophys Mol Biol; 2008; 96(1-3):321-38. PubMed ID: 17915299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the role of the coronary vasculature in the mechanisms of defibrillation.
    Bishop MJ; Plank G; Vigmond E
    Circ Arrhythm Electrophysiol; 2012 Feb; 5(1):210-9. PubMed ID: 22157522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual electrode-induced reexcitation: A mechanism of defibrillation.
    Cheng Y; Mowrey KA; Van Wagoner DR; Tchou PJ; Efimov IR
    Circ Res; 1999 Nov; 85(11):1056-66. PubMed ID: 10571537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
    Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
    Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA
    Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles.
    Rodríguez B; Trayanova N
    J Electrocardiol; 2003; 36 Suppl():51-6. PubMed ID: 14716592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.