These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22586368)

  • 1. Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+).
    Raghuram V; Sharma Y; Kreutz MR
    Front Mol Neurosci; 2012; 5():61. PubMed ID: 22586368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1.
    Schaad NC; De Castro E; Nef S; Hegi S; Hinrichsen R; Martone ME; Ellisman MH; Sikkink R; Rusnak F; Sygush J; Nef P
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):9253-8. PubMed ID: 8799187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lobe specific Ca2+-calmodulin nano-domain in neuronal spines: a single molecule level analysis.
    Kubota Y; Waxham MN
    PLoS Comput Biol; 2010 Nov; 6(11):e1000987. PubMed ID: 21085618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caldendrin and Calneurons-EF-Hand CaM-Like Calcium Sensors With Unique Features and Specialized Neuronal Functions.
    Mundhenk J; Fusi C; Kreutz MR
    Front Mol Neurosci; 2019; 12():16. PubMed ID: 30787867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins.
    Schmidt H; Eilers J
    J Comput Neurosci; 2009 Oct; 27(2):229-43. PubMed ID: 19229604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium signaling in dendritic spines.
    Higley MJ; Sabatini BL
    Cold Spring Harb Perspect Biol; 2012 Apr; 4(4):a005686. PubMed ID: 22338091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments.
    Volfovsky N; Parnas H; Segal M; Korkotian E
    J Neurophysiol; 1999 Jul; 82(1):450-62. PubMed ID: 10400971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.
    Bloodgood BL; Giessel AJ; Sabatini BL
    PLoS Biol; 2009 Sep; 7(9):e1000190. PubMed ID: 19753104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of Ca
    Chang JY; Nakahata Y; Hayano Y; Yasuda R
    Nat Commun; 2019 Jun; 10(1):2784. PubMed ID: 31239443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization.
    Majewska A; Brown E; Ross J; Yuste R
    J Neurosci; 2000 Mar; 20(5):1722-34. PubMed ID: 10684874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding glutamate receptor activation by the Ca2+ sensor protein hippocalcin in rat hippocampal neurons.
    Dovgan AV; Cherkas VP; Stepanyuk AR; Fitzgerald DJ; Haynes LP; Tepikin AV; Burgoyne RD; Belan PV
    Eur J Neurosci; 2010 Aug; 32(3):347-58. PubMed ID: 20704590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation.
    Yan J; Leal K; Magupalli VG; Nanou E; Martinez GQ; Scheuer T; Catterall WA
    Mol Cell Neurosci; 2014 Nov; 63():124-31. PubMed ID: 25447945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines.
    Bloodgood BL; Sabatini BL
    Neuron; 2007 Jan; 53(2):249-60. PubMed ID: 17224406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium Sensors in Neuronal Function and Dysfunction.
    Burgoyne RD; Helassa N; McCue HV; Haynes LP
    Cold Spring Harb Perspect Biol; 2019 May; 11(5):. PubMed ID: 30833454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diversity of calcium sensor proteins in the regulation of neuronal function.
    McCue HV; Haynes LP; Burgoyne RD
    Cold Spring Harb Perspect Biol; 2010 Aug; 2(8):a004085. PubMed ID: 20668007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity.
    Cornelisse LN; van Elburg RA; Meredith RM; Yuste R; Mansvelder HD
    PLoS One; 2007 Oct; 2(10):e1073. PubMed ID: 17957255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines.
    Zha XM; Wemmie JA; Green SH; Welsh MJ
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16556-61. PubMed ID: 17060608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live-cell transforms between Ca2+ transients and FRET responses for a troponin-C-based Ca2+ sensor.
    Tay LH; Griesbeck O; Yue DT
    Biophys J; 2007 Dec; 93(11):4031-40. PubMed ID: 17704158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins.
    Schmidt H; Kunerth S; Wilms C; Strotmann R; Eilers J
    J Physiol; 2007 Jun; 581(Pt 2):619-29. PubMed ID: 17347272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the store-operated calcium entry channel Orai1 in cultured rat hippocampal synapse formation and plasticity.
    Korkotian E; Oni-Biton E; Segal M
    J Physiol; 2017 Jan; 595(1):125-140. PubMed ID: 27393042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.