These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 22586378)

  • 1. Imaging the neural correlates of tinnitus: a comparison between animal models and human studies.
    Middleton JW; Tzounopoulos T
    Front Syst Neurosci; 2012; 6():35. PubMed ID: 22586378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural activity underlying tinnitus generation: results from PET and fMRI.
    Lanting CP; de Kleine E; van Dijk P
    Hear Res; 2009 Sep; 255(1-2):1-13. PubMed ID: 19545617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus.
    Hofmeier B; Wolpert S; Aldamer ES; Walter M; Thiericke J; Braun C; Zelle D; Rüttiger L; Klose U; Knipper M
    Neuroimage Clin; 2018; 20():637-649. PubMed ID: 30202725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tinnitus: Maladaptive auditory-somatosensory plasticity.
    Wu C; Stefanescu RA; Martel DT; Shore SE
    Hear Res; 2016 Apr; 334():20-9. PubMed ID: 26074307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 7 Tesla fMRI investigation of human tinnitus percept in cortical and subcortical auditory areas.
    Berlot E; Arts R; Smit J; George E; Gulban OF; Moerel M; Stokroos R; Formisano E; De Martino F
    Neuroimage Clin; 2020; 25():102166. PubMed ID: 31958686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity.
    Gu JW; Halpin CF; Nam EC; Levine RA; Melcher JR
    J Neurophysiol; 2010 Dec; 104(6):3361-70. PubMed ID: 20881196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thalamus and tinnitus: Bridging the gap between animal data and findings in humans.
    Koops EA; Eggermont JJ
    Hear Res; 2021 Aug; 407():108280. PubMed ID: 34175683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Tinnitus Framework: A Neurofunctional Model.
    Ghodratitoostani I; Zana Y; Delbem AC; Sani SS; Ekhtiari H; Sanchez TG
    Front Neurosci; 2016; 10():370. PubMed ID: 27594822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.
    Chen YC; Xia W; Chen H; Feng Y; Xu JJ; Gu JP; Salvi R; Yin X
    Hum Brain Mapp; 2017 May; 38(5):2384-2397. PubMed ID: 28112466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural substrates of tinnitus in animal and human cortex : cortical correlates of tinnitus.
    Eggermont JJ
    HNO; 2015 Apr; 63(4):298-301. PubMed ID: 25862624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using resting state functional connectivity to unravel networks of tinnitus.
    Husain FT; Schmidt SA
    Hear Res; 2014 Jan; 307():153-62. PubMed ID: 23895873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific activation of operculum 3 (OP3) brain region during provoked tinnitus-related phantom auditory perceptions in humans.
    Job A; Jacob R; Pons Y; Raynal M; Kossowski M; Gauthier J; Lombard B; Delon-Martin C
    Brain Struct Funct; 2016 Mar; 221(2):913-22. PubMed ID: 25503643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural brain changes in tinnitus.
    Mühlau M; Rauschecker JP; Oestreicher E; Gaser C; Röttinger M; Wohlschläger AM; Simon F; Etgen T; Conrad B; Sander D
    Cereb Cortex; 2006 Sep; 16(9):1283-8. PubMed ID: 16280464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas.
    Landgrebe M; Langguth B; Rosengarth K; Braun S; Koch A; Kleinjung T; May A; de Ridder D; Hajak G
    Neuroimage; 2009 May; 46(1):213-8. PubMed ID: 19413945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-sensory integration in brainstem and auditory cortex.
    Basura GJ; Koehler SD; Shore SE
    Brain Res; 2012 Nov; 1485():95-107. PubMed ID: 22995545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).
    San Juan J; Hu XS; Issa M; Bisconti S; Kovelman I; Kileny P; Basura G
    PLoS One; 2017; 12(6):e0179150. PubMed ID: 28604786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Neural Mechanisms of Tinnitus: A Perspective From Functional Magnetic Resonance Imaging.
    Hu J; Cui J; Xu JJ; Yin X; Wu Y; Qi J
    Front Neurosci; 2021; 15():621145. PubMed ID: 33642982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theta-gamma dysrhythmia and auditory phantom perception.
    De Ridder D; van der Loo E; Vanneste S; Gais S; Plazier M; Kovacs S; Sunaert S; Menovsky T; van de Heyning P
    J Neurosurg; 2011 Apr; 114(4):912-21. PubMed ID: 21235308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Neuroanatomy of Salicylate- and Noise-Induced Tinnitus and Hyperacusis.
    Salvi R; Auerbach BD; Lau C; Chen YC; Manohar S; Liu X; Ding D; Chen GD
    Curr Top Behav Neurosci; 2021; 51():133-160. PubMed ID: 32653998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation between perception and brain activity in gaze-evoked tinnitus.
    van Gendt MJ; Boyen K; de Kleine E; Langers DR; van Dijk P
    J Neurosci; 2012 Dec; 32(49):17528-39. PubMed ID: 23223277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.