BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 22586586)

  • 1. Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes.
    Rosca MG; Vazquez EJ; Chen Q; Kerner J; Kern TS; Hoppel CL
    Diabetes; 2012 Aug; 61(8):2074-83. PubMed ID: 22586586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial superoxide and coenzyme Q in insulin-deficient rats: increased electron leak.
    Herlein JA; Fink BD; Henry DM; Yorek MA; Teesch LM; Sivitz WI
    Am J Physiol Regul Integr Comp Physiol; 2011 Dec; 301(6):R1616-24. PubMed ID: 21940403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoglycemia Induces Mitochondrial Reactive Oxygen Species Production Through Increased Fatty Acid Oxidation and Promotes Retinal Vascular Permeability in Diabetic Mice.
    Yoshinaga A; Kajihara N; Kukidome D; Motoshima H; Matsumura T; Nishikawa T; Araki E
    Antioxid Redox Signal; 2021 Jun; 34(16):1245-1259. PubMed ID: 32757614
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.
    Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD
    Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
    Gvozdjáková A; Kucharská J; Kura B; Vančová O; Rausová Z; Sumbalová Z; Uličná O; Slezák J
    Can J Physiol Pharmacol; 2020 Jan; 98(1):29-34. PubMed ID: 31536712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species.
    Schönfeld P; Wieckowski MR; Lebiedzińska M; Wojtczak L
    Biochim Biophys Acta; 2010; 1797(6-7):929-38. PubMed ID: 20085746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.
    Lefort N; Glancy B; Bowen B; Willis WT; Bailowitz Z; De Filippis EA; Brophy C; Meyer C; Højlund K; Yi Z; Mandarino LJ
    Diabetes; 2010 Oct; 59(10):2444-52. PubMed ID: 20682693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology of superoxide production from different sites in the mitochondrial electron transport chain.
    St-Pierre J; Buckingham JA; Roebuck SJ; Brand MD
    J Biol Chem; 2002 Nov; 277(47):44784-90. PubMed ID: 12237311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2012 Mar; 1817(3):410-8. PubMed ID: 22226918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper modulates heart mitochondrial H
    Isei MO; Stevens D; Kamunde C
    Comp Biochem Physiol C Toxicol Pharmacol; 2022 Apr; 254():109267. PubMed ID: 35026399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.
    Singh H; Beckman K; Poulos A
    J Biol Chem; 1994 Apr; 269(13):9514-20. PubMed ID: 8144536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A.
    Yamagishi SI; Edelstein D; Du XL; Kaneda Y; Guzmán M; Brownlee M
    J Biol Chem; 2001 Jul; 276(27):25096-100. PubMed ID: 11342529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.
    Martin C; Dubouchaud H; Mosoni L; Chardigny JM; Oudot A; Fontaine E; Vergely C; Keriel C; Rochette L; Leverve X; Demaison L
    Aging Cell; 2007 Apr; 6(2):165-77. PubMed ID: 17286611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible role of avian uncoupling protein in down-regulating mitochondrial superoxide production in skeletal muscle of fasted chickens.
    Abe T; Mujahid A; Sato K; Akiba Y; Toyomizu M
    FEBS Lett; 2006 Sep; 580(20):4815-22. PubMed ID: 16904672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume.
    Moir AM; Zammit VA
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):953-8. PubMed ID: 7848296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased platelet aggregation and fatty acid oxidation in diabetic rats.
    Iida N; Iida R; Takeyama N; Tanaka T
    Biochem Mol Biol Int; 1993 May; 30(1):177-85. PubMed ID: 8358330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.