These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22586828)

  • 1. Effects of experimental leg length discrepancies on body posture and dental occlusion.
    Maeda N; Sakaguchi K; Mehta NR; Abdallah EF; Forgione AG; Yokoyama A
    Cranio; 2011 Jul; 29(3):194-203. PubMed ID: 22586828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of the relationship between mandibular position and body posture.
    Sakaguchi K; Mehta NR; Abdallah EF; Forgione AG; Hirayama H; Kawasaki T; Yokoyama A
    Cranio; 2007 Oct; 25(4):237-49. PubMed ID: 17983123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced leg length inequality affects pelvis orientation during upright standing immediately following a sit-to-stand transfer: a pre-post measurement study.
    Vella SP; Swain M; Downie A; Howarth SJ; Funabashi M; Engel RM
    BMC Musculoskelet Disord; 2023 Mar; 24(1):203. PubMed ID: 36932408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated leg-length discrepancy: its effect on mean center-of-pressure position and postural sway.
    Mahar RK; Kirby RL; MacLeod DA
    Arch Phys Med Rehabil; 1985 Dec; 66(12):822-4. PubMed ID: 4074116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in postural control associated with location of the center of gravity and foot pressure.
    Tanaka T; Takeda H; Izumi T; Ino S; Ifukube T
    Phys Occup Ther Geriatr; 1997; 15(2):1-14. PubMed ID: 11541502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An observational analysis to evaluate the influence of occlusion on body posture and plantar pressure - An in vivo study.
    Deshmukh A; Poovani SK; Thumati P
    J Indian Prosthodont Soc; 2024 Jul; 24(3):273-278. PubMed ID: 38946511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leg Length Discrepancy: Dynamic Balance Response during Gait.
    Azizan NA; Basaruddin KS; Salleh AF; Sulaiman AR; Safar MJA; Rusli WMR
    J Healthc Eng; 2018; 2018():7815451. PubMed ID: 29983905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Does a Temporary Leg Length Discrepancy have an Influence on Upper Body Posture and Lower Jaw Position in Competitive Athletes?].
    Ohlendorf D; Himmelreich M; Mickel C; Groneberg DA; Kopp S
    Sportverletz Sportschaden; 2015 Sep; 29(3):157-63. PubMed ID: 25901666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of heel lifts on ground reaction force patterns in subjects with structural leg-length discrepancies.
    Schuit D; Adrian M; Pidcoe P
    Phys Ther; 1989 Aug; 69(8):663-70. PubMed ID: 2748721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effect of heel lift on postural stability and symmetry of muscle activity.
    Kutilek P; Svoboda Z; Viteckova S; Hana K; Vana Z
    J Back Musculoskelet Rehabil; 2017 Sep; 30(5):1037-1044. PubMed ID: 28946517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posture control development in children aged 2-7 years old, based on the changes of repeatability of the stability indices.
    Sobera M; Siedlecka B; Syczewska M
    Neurosci Lett; 2011 Mar; 491(1):13-7. PubMed ID: 21215293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra- and inter-foot coordination in quiet standing: footwear and posture effects.
    Kilby MC; Newell KM
    Gait Posture; 2012 Mar; 35(3):511-6. PubMed ID: 22169385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term effect of correcting leg length discrepancy on performance of a forceful body extension task in young adults.
    Yen ST; Andrew PD; Cummings GS
    Hiroshima J Med Sci; 1998 Dec; 47(4):139-43. PubMed ID: 9973739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Clenching and Occlusal Instability on Body Weight Distribution, Assessed by a Postural Platform.
    Michalakis KX; Kamalakidis SN; Pissiotis AL; Hirayama H
    Biomed Res Int; 2019; 2019():7342541. PubMed ID: 31341904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simulating leg length inequality on pelvic torsion and trunk mobility.
    Young RS; Andrew PD; Cummings GS
    Gait Posture; 2000 Jun; 11(3):217-23. PubMed ID: 10802434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg-length discrepancy: effect on the amplitude of postural sway.
    Murrell P; Cornwall MW; Doucet SK
    Arch Phys Med Rehabil; 1991 Aug; 72(9):646-8. PubMed ID: 1859258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute systematic and variable postural adaptations induced by an orthopaedic shoe lift in control subjects.
    Beaudoin L; Zabjek KF; Leroux MA; Coillard C; Rivard CH
    Eur Spine J; 1999; 8(1):40-5. PubMed ID: 10190853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Normal occlusion study: using T-Scan III occlusal analysis system].
    Ma FF; Hu XL; Li JH; Lin Y
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2013 Jun; 48(6):363-7. PubMed ID: 24120007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of postural radiographs as a way to measure change in pelvic obliquity.
    Fann AV
    Arch Phys Med Rehabil; 2003 Jan; 84(1):75-8. PubMed ID: 12589624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foot posture, leg length discrepancy and low back pain--their relationship and clinical management using foot orthoses--an overview.
    Kendall JC; Bird AR; Azari MF
    Foot (Edinb); 2014 Jun; 24(2):75-80. PubMed ID: 24703513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.