These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 22586919)
1. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose. Zhang L; Guo ZP; Ding ZY; Wang ZX; Shi GY Prikl Biokhim Mikrobiol; 2012; 48(2):243-8. PubMed ID: 22586919 [TBL] [Abstract][Full Text] [Related]
2. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983 [TBL] [Abstract][Full Text] [Related]
4. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface. Tokuhiro K; Ishida N; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785 [TBL] [Abstract][Full Text] [Related]
5. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase. Saitoh S; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701 [TBL] [Abstract][Full Text] [Related]
6. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Saitoh S; Hasunuma T; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354 [TBL] [Abstract][Full Text] [Related]
8. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Apiwatanapiwat W; Murata Y; Kosugi A; Yamada R; Kondo A; Arai T; Rugthaworn P; Mori Y Appl Microbiol Biotechnol; 2011 Apr; 90(1):377-84. PubMed ID: 21327413 [TBL] [Abstract][Full Text] [Related]
9. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. Bae YH; Kang KH; Jin YS; Seo JH J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384 [TBL] [Abstract][Full Text] [Related]
11. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Ha SJ; Kim SR; Kim H; Du J; Cate JH; Jin YS Bioresour Technol; 2013 Dec; 149():525-31. PubMed ID: 24140899 [TBL] [Abstract][Full Text] [Related]
12. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae. Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937 [TBL] [Abstract][Full Text] [Related]
13. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose. Ríos-Fránquez FJ; González-Bautista E; Ponce-Noyola T; Ramos-Valdivia AC; Poggi-Varaldo HM; García-Mena J; Martinez A Arch Microbiol; 2017 May; 199(4):605-611. PubMed ID: 28138738 [TBL] [Abstract][Full Text] [Related]
14. Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain. Casa-Villegas M; Marín-Navarro J; Polaina J World J Microbiol Biotechnol; 2017 Jul; 33(7):140. PubMed ID: 28589508 [TBL] [Abstract][Full Text] [Related]
15. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. van Rooyen R; Hahn-Hägerdal B; La Grange DC; van Zyl WH J Biotechnol; 2005 Nov; 120(3):284-95. PubMed ID: 16084620 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. Lee WH; Nan H; Kim HJ; Jin YS J Biotechnol; 2013 Sep; 167(3):316-22. PubMed ID: 23835155 [TBL] [Abstract][Full Text] [Related]
17. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Yanase S; Hasunuma T; Yamada R; Tanaka T; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2010 Sep; 88(1):381-8. PubMed ID: 20676628 [TBL] [Abstract][Full Text] [Related]
18. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Fujita Y; Ito J; Ueda M; Fukuda H; Kondo A Appl Environ Microbiol; 2004 Feb; 70(2):1207-12. PubMed ID: 14766607 [TBL] [Abstract][Full Text] [Related]
19. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added. Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956 [TBL] [Abstract][Full Text] [Related]
20. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast. Wang X; Liu ZL; Weber SA; Zhang X PLoS One; 2016; 11(3):e0151293. PubMed ID: 27011316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]