BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22586919)

  • 1. Construction of the industrial ethanol-producing strain of Saccharomyces cerevisiae able to ferment cellobiose and melibiose.
    Zhang L; Guo ZP; Ding ZY; Wang ZX; Shi GY
    Prikl Biokhim Mikrobiol; 2012; 48(2):243-8. PubMed ID: 22586919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
    Guo ZP; Zhang L; Ding ZY; Gu ZH; Shi GY
    Enzyme Microb Technol; 2011 Jun; 49(1):105-12. PubMed ID: 22112279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase.
    Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y
    Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic fermentation of cellobiose by a yeast strain displaying beta-glucosidase on the cell surface.
    Tokuhiro K; Ishida N; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):481-8. PubMed ID: 18443785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.
    Saitoh S; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies.
    Wickramasinghe GHIM; Rathnayake PPAMSI; Chandrasekharan NV; Weerasinghe MSS; Wijesundera RLC; Wijesundera WSS
    BMC Microbiol; 2017 Jun; 17(1):137. PubMed ID: 28637443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.
    Apiwatanapiwat W; Murata Y; Kosugi A; Yamada R; Kondo A; Arai T; Rugthaworn P; Mori Y
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):377-84. PubMed ID: 21327413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
    Treebupachatsakul T; Nakazawa H; Shinbo H; Fujikawa H; Nagaiwa A; Ochiai N; Kawaguchi T; Nikaido M; Totani K; Shioya K; Shida Y; Morikawa Y; Ogasawara W; Okada H
    J Biosci Bioeng; 2016 Jan; 121(1):27-35. PubMed ID: 26073313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Ha SJ; Kim SR; Kim H; Du J; Cate JH; Jin YS
    Bioresour Technol; 2013 Dec; 149():525-31. PubMed ID: 24140899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
    Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose.
    Ríos-Fránquez FJ; González-Bautista E; Ponce-Noyola T; Ramos-Valdivia AC; Poggi-Varaldo HM; García-Mena J; Martinez A
    Arch Microbiol; 2017 May; 199(4):605-611. PubMed ID: 28138738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain.
    Casa-Villegas M; Marín-Navarro J; Polaina J
    World J Microbiol Biotechnol; 2017 Jul; 33(7):140. PubMed ID: 28589508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains.
    van Rooyen R; Hahn-Hägerdal B; La Grange DC; van Zyl WH
    J Biotechnol; 2005 Nov; 120(3):284-95. PubMed ID: 16084620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase.
    Lee WH; Nan H; Kim HJ; Jin YS
    J Biotechnol; 2013 Sep; 167(3):316-22. PubMed ID: 23835155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes.
    Yanase S; Hasunuma T; Yamada R; Tanaka T; Ogino C; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):381-8. PubMed ID: 20676628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme.
    Fujita Y; Ito J; Ueda M; Fukuda H; Kondo A
    Appl Environ Microbiol; 2004 Feb; 70(2):1207-12. PubMed ID: 14766607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.
    Feng C; Zou S; Liu C; Yang H; Zhang K; Ma Y; Hong J; Zhang M
    World J Microbiol Biotechnol; 2016 May; 32(5):86. PubMed ID: 27038956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast.
    Wang X; Liu ZL; Weber SA; Zhang X
    PLoS One; 2016; 11(3):e0151293. PubMed ID: 27011316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.