BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22586953)

  • 21. Remote sensing-based time-series analysis of cheatgrass (Bromus tectorum L.) phenology.
    Clinton NE; Potter C; Crabtree B; Genovese V; Gross P; Gong P
    J Environ Qual; 2010; 39(3):955-63. PubMed ID: 20400591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability.
    Tagesson T; Fensholt R; Guiro I; Rasmussen MO; Huber S; Mbow C; Garcia M; Horion S; Sandholt I; Holm-Rasmussen B; Göttsche FM; Ridler ME; Olén N; Lundegard Olsen J; Ehammer A; Madsen M; Olesen FS; Ardö J
    Glob Chang Biol; 2015 Jan; 21(1):250-64. PubMed ID: 25204271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Variation of satellite-based spring vegetation phenology and the relationship with climate in the Northern Hemisphere over 1982 to 2009.].
    Cong N; Shen MG
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2737-2746. PubMed ID: 29732834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between normalized difference vegetation index and malaria in a subtropical rain forest undergoing rapid anthropogenic alteration.
    Wayant NM; Maldonado D; Rojas de Arias A; Cousiño B; Goodin DG
    Geospat Health; 2010 May; 4(2):179-90. PubMed ID: 20503187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation.
    Ghosh S; Nandy S; Mohanty S; Subba R; Kushwaha SPS
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):786. PubMed ID: 31989274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.
    Yan W; Hu Z; Zhao Y; Zhang X; Fan Y; Shi P; He Y; Yu G; Li Y
    PLoS One; 2015; 10(4):e0122486. PubMed ID: 25849325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning.
    Turner DP; Jacobson AR; Ritts WD; Wang WL; Nemani R
    Glob Chang Biol; 2013 Nov; 19(11):3516-28. PubMed ID: 23824790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Applicability of multiple remotely sensed vegetation indices for extracting key phenological metrics of
    Zhou HQ; Bao G; Jin H; DU LT; Zhang SL; Xu ZW; Bao YH
    Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4315-4326. PubMed ID: 34951273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing.
    Hilker T; Natsagdorj E; Waring RH; Lyapustin A; Wang Y
    Glob Chang Biol; 2014 Feb; 20(2):418-28. PubMed ID: 23966315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models.
    Parazoo NC; Bowman K; Fisher JB; Frankenberg C; Jones DB; Cescatti A; Pérez-Priego O; Wohlfahrt G; Montagnani L
    Glob Chang Biol; 2014 Oct; 20(10):3103-21. PubMed ID: 24909755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.
    Lausch A; Pause M; Merbach I; Zacharias S; Doktor D; Volk M; Seppelt R
    Environ Monit Assess; 2013 Feb; 185(2):1215-35. PubMed ID: 22527462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg Mountain Region of South Africa.
    Mukwada G; Manatsa D
    Environ Monit Assess; 2018 May; 190(6):358. PubMed ID: 29797078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.
    Zhu W; Chen G; Jiang N; Liu J; Mou M
    PLoS One; 2013; 8(12):e84990. PubMed ID: 24386441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EcoSpec: Highly Equipped Tower-Based Hyperspectral and Thermal Infrared Automatic Remote Sensing System for Investigating Plant Responses to Environmental Changes.
    Hamada Y; Cook D; Bales D
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Research advances in plant phenology].
    Li R; Zhou G; Zhang H
    Ying Yong Sheng Tai Xue Bao; 2006 Mar; 17(3):541-4. PubMed ID: 16724759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Remote sensing based monitoring of vegetation dynamics and ecological restoration in Beijing mountainous area].
    Hu Y; Liu LY; Jia JH
    Ying Yong Sheng Tai Xue Bao; 2010 Nov; 21(11):2876-82. PubMed ID: 21361013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-resolution approach to estimating ecosystem respiration at continental scales using operational satellite data.
    Jägermeyr J; Gerten D; Lucht W; Hostert P; Migliavacca M; Nemani R
    Glob Chang Biol; 2014 Apr; 20(4):1191-210. PubMed ID: 24259306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Application of near-surface remote sensing in monitoring the dynamics of forest canopy phenology.].
    Liu F; Wang CK; Wang XC
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1768-1778. PubMed ID: 29974684
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural vegetation phenology assessment by ground spectral measurements in two semi-arid environments.
    Karnieli A
    Int J Biometeorol; 2003 Aug; 47(4):179-87. PubMed ID: 12707836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.