These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 22587154)

  • 1. Extracting topological features from dynamical measures in networks of Kuramoto oscillators.
    Prignano L; Díaz-Guilera A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036112. PubMed ID: 22587154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of coherence in complex networks of heterogeneous dynamical systems.
    Restrepo JG; Ott E; Hunt BR
    Phys Rev Lett; 2006 Jun; 96(25):254103. PubMed ID: 16907307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological measure locating the effective crossover between segregation and integration in a modular network.
    Adjari Rad A; Sendiña-Nadal I; Papo D; Zanin M; Buldú JM; del Pozo F; Boccaletti S
    Phys Rev Lett; 2012 Jun; 108(22):228701. PubMed ID: 23003663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity and learning in a network of coupled phase oscillators.
    Seliger P; Young SC; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization in symmetric bipolar population networks.
    Buzna L; Lozano S; Díaz-Guilera A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066120. PubMed ID: 20365244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling.
    Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016212. PubMed ID: 20866712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise.
    Gupta S; Campa A; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022123. PubMed ID: 25353438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteretic transitions in the Kuramoto model with inertia.
    Olmi S; Navas A; Boccaletti S; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large coupled oscillator systems with heterogeneous interaction delays.
    Lee WS; Ott E; Antonsen TM
    Phys Rev Lett; 2009 Jul; 103(4):044101. PubMed ID: 19659358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling.
    Wu H; Kang L; Liu Z; Dhamala M
    Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring connectivity of interacting phase oscillators.
    Yu D; Fortuna L; Liu F
    Chaos; 2008 Dec; 18(4):043101. PubMed ID: 19123611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kuramoto model with additional nearest-neighbor interactions: Existence of a nonequilibrium tricritical point.
    Sarkar M; Gupta S
    Phys Rev E; 2020 Sep; 102(3-1):032202. PubMed ID: 33075901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling.
    Frolov N; Maksimenko V; Majhi S; Rakshit S; Ghosh D; Hramov A
    Chaos; 2020 Aug; 30(8):081102. PubMed ID: 32872824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Social climber attachment in forming networks produces a phase transition in a measure of connectivity.
    Taylor D; Larremore DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031140. PubMed ID: 23030899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kuramoto model with asymmetric distribution of natural frequencies.
    Basnarkov L; Urumov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011113. PubMed ID: 18763925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy-production-driven oscillators in simple nonequilibrium networks.
    Weber JK; Pande VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032136. PubMed ID: 25871083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.