These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 22587158)
1. Required criteria for recognizing new types of chaos: application to the "cord" attractor. Letellier C; Aguirre LA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036204. PubMed ID: 22587158 [TBL] [Abstract][Full Text] [Related]
2. Testing dynamical system variables for reconstruction. Carroll TL Chaos; 2018 Oct; 28(10):103117. PubMed ID: 30384628 [TBL] [Abstract][Full Text] [Related]
3. Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor. Mangiarotti S; Letellier C Chaos; 2021 Jan; 31(1):013129. PubMed ID: 33754770 [TBL] [Abstract][Full Text] [Related]
4. Influence of the singular manifold of nonobservable states in reconstructing chaotic attractors. Frunzete M; Barbot JP; Letellier C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026205. PubMed ID: 23005843 [TBL] [Abstract][Full Text] [Related]
5. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations. Li C; Wang E; Wang J J Chem Phys; 2012 May; 136(19):194108. PubMed ID: 22612081 [TBL] [Abstract][Full Text] [Related]
6. Geometric and dynamic perspectives on phase-coherent and noncoherent chaos. Zou Y; Donner RV; Kurths J Chaos; 2012 Mar; 22(1):013115. PubMed ID: 22462991 [TBL] [Abstract][Full Text] [Related]
7. Stochastic bifurcation in a driven laser system: experiment and theory. Billings L; Schwartz IB; Morgan DS; Bollt EM; Meucci R; Allaria E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026220. PubMed ID: 15447578 [TBL] [Abstract][Full Text] [Related]
8. Partially controlling transient chaos in the Lorenz equations. Capeáns R; Sabuco J; Sanjuán MA; Yorke JA Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2088):. PubMed ID: 28115608 [TBL] [Abstract][Full Text] [Related]
9. Topological characterization of deterministic chaos: enforcing orientation preservation. Lefranc M; Morant PE; Nizette M Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1865):559-67. PubMed ID: 17698472 [TBL] [Abstract][Full Text] [Related]
10. Reverse horseshoe and spiral templates in an erbium-doped fiber laser. Used J; Martín JC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046213. PubMed ID: 19518318 [TBL] [Abstract][Full Text] [Related]
11. Templex: A bridge between homologies and templates for chaotic attractors. Charó GD; Letellier C; Sciamarella D Chaos; 2022 Aug; 32(8):083108. PubMed ID: 36049919 [TBL] [Abstract][Full Text] [Related]
12. Turing patterns and long-time behavior in a three-species food-chain model. Parshad RD; Kumari N; Kasimov AR; Abderrahmane HA Math Biosci; 2014 Aug; 254():83-102. PubMed ID: 24952324 [TBL] [Abstract][Full Text] [Related]
13. Simplifications of the Lorenz attractor. Sprott JC Nonlinear Dynamics Psychol Life Sci; 2009 Jul; 13(3):271-8. PubMed ID: 19527618 [TBL] [Abstract][Full Text] [Related]
14. Attractor radius for fractional Lorenz systems and their application to the quantification of predictability limits. Wang Y; Wei Z; Feng G Chaos; 2023 Jan; 33(1):013105. PubMed ID: 36725651 [TBL] [Abstract][Full Text] [Related]