These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22587175)

  • 1. Bilateral shear layer between two parallel Couette flows.
    Narasimhamurthy VD; Ellingsen SÅ; Andersson HI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036302. PubMed ID: 22587175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics.
    Suryanarayanan S; Narasimha R; Hari Dass ND
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013009. PubMed ID: 24580322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Space-time correlations of fluctuating velocities in turbulent shear flows.
    Zhao X; He GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046316. PubMed ID: 19518342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oblique laminar-turbulent interfaces in plane shear flows.
    Duguet Y; Schlatter P
    Phys Rev Lett; 2013 Jan; 110(3):034502. PubMed ID: 23373928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical Solutions for Simple Turbulent Shear Flows on a Basis of a Generalized Newton's Law.
    Nikushchenko D; Pavlovsky V; Nikushchenko E
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streamwise-travelling viscous waves in channel flows.
    Ricco P; Hicks PD
    J Eng Math; 2018; 111(1):23-49. PubMed ID: 30996402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instabilities in a horizontal liquid layer in cocurrent gas flow with an evaporating interface.
    Liu R; Kabov OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066305. PubMed ID: 23005204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact invariant solution reveals the origin of self-organized oblique turbulent-laminar stripes.
    Reetz F; Kreilos T; Schneider TM
    Nat Commun; 2019 May; 10(1):2277. PubMed ID: 31123255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct numerical simulation of stochastically forced laminar plane couette flow: peculiarities of hydrodynamic fluctuations.
    Khujadze G; Oberlack M; Chagelishvili G
    Phys Rev Lett; 2006 Jul; 97(3):034501. PubMed ID: 16907504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of turbulent spots in a parallel shear flow.
    Schumacher J; Eckhardt B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046307. PubMed ID: 11308945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing Knudsen layer phenomena using a lattice Boltzmann model.
    Zhang YH; Gu XJ; Barber RW; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046704. PubMed ID: 17155209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation.
    Pattison MJ; Premnath KN; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026704. PubMed ID: 19391871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition delay using control theory.
    Bagheri S; Henningson DS
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1365-81. PubMed ID: 21382819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows.
    Stone PA; Waleffe F; Graham MD
    Phys Rev Lett; 2002 Nov; 89(20):208301. PubMed ID: 12443512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-sustaining processes at all scales in wall-bounded turbulent shear flows.
    Cossu C; Hwang Y
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free-path distribution and Knudsen-layer modeling for gaseous flows in the transition regime.
    To QD; Léonard C; Lauriat G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023015. PubMed ID: 25768605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct numerical simulation of turbulent mixing.
    Statsenko VP; Yanilkin YV; Zhmaylo VA
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120216. PubMed ID: 24146009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling coupled turbulence - dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell.
    Chatelain M; Guizien K
    Water Res; 2010 Mar; 44(5):1361-72. PubMed ID: 19945138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuum approach to wide shear zones in quasistatic granular matter.
    Depken M; van Saarloos W; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031302. PubMed ID: 16605512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.