These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22587205)

  • 1. Compact computations based on a stream-function-velocity formulation of two-dimensional steady laminar natural convection in a square cavity.
    Yu PX; Tian ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036703. PubMed ID: 22587205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully compact higher-order computation of steady-state natural convection in a square cavity.
    Kalita JC; Dalal DC; Dass AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066703. PubMed ID: 11736309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar Wall Jet Flow and Heat Transfer over a Shallow Cavity.
    Prabu PM; Padmanaban KP
    ScientificWorldJournal; 2015; 2015():926249. PubMed ID: 26413565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme.
    Rashidi MM; Sadri M; Sheremet MA
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field.
    Huang R; Wu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033302. PubMed ID: 25871241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection.
    Wen B; Chini GP; Kerswell RR; Doering CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043012. PubMed ID: 26565337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugate heat and mass transfer in the lattice Boltzmann equation method.
    Li L; Chen C; Mei R; Klausner JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043308. PubMed ID: 24827365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Square patterns in rotating Rayleigh-Bénard convection.
    Sánchez-Alvarez JJ; Serre E; del Arco EC; Busse FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036307. PubMed ID: 16241571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy generation in nanofluid flow due to double diffusive MHD mixed convection.
    Mondal P; Mahapatra TR; Parveen R
    Heliyon; 2021 Mar; 7(3):e06143. PubMed ID: 33748445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method.
    Chai Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013305. PubMed ID: 25122408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lattice kinetic scheme for incompressible viscous flows with heat transfer.
    Inamuro T
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):477-84. PubMed ID: 16210191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation.
    Wang Y; Zhang J
    J Comput Appl Math; 2010 Oct; 234(12):3496-3506. PubMed ID: 21151737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact fourth-order finite difference method for solving differential equations.
    Wilkinson PB; Fromhold TM; Tench CR; Taylor RP; Micolich AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):047701. PubMed ID: 11690185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buoyant Convection Computed in a Vorticity, Stream-Function Formulation.
    Rehm RG; Baum HR; Barnett PD
    J Res Natl Bur Stand (1977); 1982; 87(2):165-185. PubMed ID: 34566079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method of approximations for the convection-dominated anomalous diffusion equation in a rectangular plate using high-resolution compact discretization.
    Jha N; Verma S
    MethodsX; 2022; 9():101853. PubMed ID: 36164430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of invariant compact finite-difference schemes.
    Ozbenli E; Vedula P
    Phys Rev E; 2020 Feb; 101(2-1):023303. PubMed ID: 32168606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.