These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 22587206)

  • 1. Generalized Monte Carlo loop algorithm for two-dimensional frustrated Ising models.
    Wang Y; De Sterck H; Melko RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036704. PubMed ID: 22587206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo study of degenerate ground states and residual entropy in a frustrated honeycomb lattice Ising model.
    Andrews S; De Sterck H; Inglis S; Melko RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041127. PubMed ID: 19518193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duality relation for frustrated spin models.
    Lee DH; Wu FY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026111. PubMed ID: 12636752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations.
    Trebst S; Huse DA; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046701. PubMed ID: 15600559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropy of diluted antiferromagnetic Ising models on frustrated lattices using the Wang-Landau method.
    Shevchenko Y; Nefedev K; Okabe Y
    Phys Rev E; 2017 May; 95(5-1):052132. PubMed ID: 28618636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ising antiferromagnet on the Archimedean lattices.
    Yu U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062121. PubMed ID: 26172675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems.
    Nakamura T
    Phys Rev Lett; 2008 Nov; 101(21):210602. PubMed ID: 19113399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering.
    Wang W; Machta J; Katzgraber HG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013303. PubMed ID: 26274303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground State, Magnetization Process and Bipartite Quantum Entanglement of a Spin-1/2 Ising-Heisenberg Model on Planar Lattices of Interconnected Trigonal Bipyramids.
    Gálisová L; Kaczor M
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding dynamics of coherent Ising machines through simulation of large-scale 2D Ising models.
    Böhm F; Inagaki T; Inaba K; Honjo T; Enbutsu K; Umeki T; Kasahara R; Takesue H
    Nat Commun; 2018 Nov; 9(1):5020. PubMed ID: 30479329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster Monte Carlo simulation of the transverse Ising model.
    Blöte HW; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066110. PubMed ID: 12513350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ashkin-Teller criticality and weak first-order behavior of the phase transition to a fourfold degenerate state in two-dimensional frustrated Ising antiferromagnets.
    Liu RM; Zhuo WZ; Chen J; Qin MH; Zeng M; Lu XB; Gao XS; Liu JM
    Phys Rev E; 2017 Jul; 96(1-1):012103. PubMed ID: 29347150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear relaxation in large two-dimensional Ising models.
    Lin Y; Wang F
    Phys Rev E; 2016 Feb; 93(2):022113. PubMed ID: 26986294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster algorithms for frustrated two-dimensional Ising antiferromagnets via dual worm constructions.
    Rakala G; Damle K
    Phys Rev E; 2017 Aug; 96(2-1):023304. PubMed ID: 28950451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming the slowing down of flat-histogram Monte Carlo simulations: cluster updates and optimized broad-histogram ensembles.
    Wu Y; Körner M; Colonna-Romano L; Trebst S; Gould H; Machta J; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046704. PubMed ID: 16383564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram.
    Wang F; Landau DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed-up of Monte Carlo simulations by sampling of rejected states.
    Frenkel D
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17571-5. PubMed ID: 15591337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence or absence of order by disorder in a highly frustrated region of the spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices.
    Strečka J; Ekiz C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052143. PubMed ID: 26066155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.