These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 22587212)
1. Transition path sampling algorithm for discrete many-body systems. Mora T; Walczak AM; Zamponi F Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036710. PubMed ID: 22587212 [TBL] [Abstract][Full Text] [Related]
2. Accelerated stochastic sampling of discrete statistical systems. Bertalan Z; Nishimori H; Orland H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056704. PubMed ID: 21230616 [TBL] [Abstract][Full Text] [Related]
3. Stochastic potential switching algorithm for Monte Carlo simulations of complex systems. Mak CH J Chem Phys; 2005 Jun; 122(21):214110. PubMed ID: 15974731 [TBL] [Abstract][Full Text] [Related]
4. Path ensembles and path sampling in nonequilibrium stochastic systems. Harland B; Sun SX J Chem Phys; 2007 Sep; 127(10):104103. PubMed ID: 17867733 [TBL] [Abstract][Full Text] [Related]
5. Tensor-network algorithm for nonequilibrium relaxation in the thermodynamic limit. Hotta Y Phys Rev E; 2016 Jun; 93(6):062136. PubMed ID: 27415237 [TBL] [Abstract][Full Text] [Related]
6. A path integral methodology for obtaining thermodynamic properties of nonadiabatic systems using Gaussian mixture distributions. Raymond N; Iouchtchenko D; Roy PN; Nooijen M J Chem Phys; 2018 May; 148(19):194110. PubMed ID: 30307181 [TBL] [Abstract][Full Text] [Related]
8. New shooting algorithms for transition path sampling: centering moves and varied-perturbation sizes for improved sampling. Rowley CN; Woo TK J Chem Phys; 2009 Dec; 131(23):234102. PubMed ID: 20025309 [TBL] [Abstract][Full Text] [Related]
9. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations. Inglis S; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013306. PubMed ID: 23410459 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic Casimir effect in films: the exchange cluster algorithm. Hasenbusch M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022110. PubMed ID: 25768461 [TBL] [Abstract][Full Text] [Related]
11. Reverse monte carlo method and its implications for generalized cluster algorithms. Mak CH; Sharma AK Phys Rev Lett; 2007 May; 98(18):180602. PubMed ID: 17501553 [TBL] [Abstract][Full Text] [Related]
12. Exact algorithm for sampling the two-dimensional Ising spin glass. Thomas CK; Middleton AA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046708. PubMed ID: 19905483 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo Sampling with Hierarchical Move Sets: POSH Monte Carlo. Nilmeier J; Jacobson MP J Chem Theory Comput; 2009 Aug; 5(8):1968-84. PubMed ID: 26613140 [TBL] [Abstract][Full Text] [Related]
15. Improved transition path sampling methods for simulation of rare events. Chopra M; Malshe R; Reddy AS; de Pablo JJ J Chem Phys; 2008 Apr; 128(14):144104. PubMed ID: 18412420 [TBL] [Abstract][Full Text] [Related]
16. Comparative Monte Carlo efficiency by Monte Carlo analysis. Rubenstein BM; Gubernatis JE; Doll JD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207 [TBL] [Abstract][Full Text] [Related]
17. Path integral Monte Carlo study of the interacting quantum double-well model: quantum phase transition and phase diagram. Kim DH; Lin YC; Rieger H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016702. PubMed ID: 17358287 [TBL] [Abstract][Full Text] [Related]
18. Activation processes with memory. Zhukov AV; Kim SW; George TF J Phys Chem A; 2008 Apr; 112(13):2794-802. PubMed ID: 18303872 [TBL] [Abstract][Full Text] [Related]