These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 22587218)

  • 1. No stability switching at saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations.
    Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):037602. PubMed ID: 22587218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations.
    Zhu Y; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036605. PubMed ID: 17500807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcations of the trajectories at the saddle level in a Hamiltonian system generated by two coupled Schrodinger equations.
    Eleonsky VM; Korolev VG; Kulagin NE; Shil'nikov LP
    Chaos; 1992 Oct; 2(4):571-579. PubMed ID: 12780004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal critical power for nonlinear Schrödinger equations with a symmetric double well potential.
    Sacchetti A
    Phys Rev Lett; 2009 Nov; 103(19):194101. PubMed ID: 20365923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistability and arithmetically period-adding bifurcations in piecewise smooth dynamical systems.
    Do Y; Lai YC
    Chaos; 2008 Dec; 18(4):043107. PubMed ID: 19123617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability criterion for multicomponent solitary waves.
    Pelinovsky DE; Kivshar YS
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8668-76. PubMed ID: 11138169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Schrödinger equations with amplitude-dependent Wadati potentials.
    Zezyulin DA
    Phys Rev E; 2022 Nov; 106(5-1):054209. PubMed ID: 36559427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of solitary wave trains in Hamiltonian wave systems.
    Arnold JM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):979-86. PubMed ID: 11969843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials.
    He JR; Li HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066607. PubMed ID: 21797507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulational instability of bright solitary waves in incoherently coupled nonlinear Schrödinger equations.
    Skryabin DV; Firth WJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):1019-29. PubMed ID: 11969848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local and global bifurcations at infinity in models of glycolytic oscillations.
    Sturis J; Brøns M
    J Math Biol; 1997 Dec; 36(2):119-32. PubMed ID: 9463107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solitons in one-dimensional nonlinear Schrödinger lattices with a local inhomogeneity.
    Palmero F; Carretero-González R; Cuevas J; Kevrekidis PG; Królikowski W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036614. PubMed ID: 18517550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small aspect ratio Taylor-Couette flow: onset of a very-low-frequency three-torus state.
    Lopez JM; Marques F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036302. PubMed ID: 14524885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media.
    Shi Z; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056602. PubMed ID: 17677181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials.
    Mertens FG; Cooper F; Arévalo E; Khare A; Saxena A; Bishop AR
    Phys Rev E; 2016 Sep; 94(3-1):032213. PubMed ID: 27739801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential.
    Xu SL; Zhao GP; Belić MR; He JR; Xue L
    Opt Express; 2017 Apr; 25(8):9094-9104. PubMed ID: 28437984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-dimensional dynamical systems exploiting instabilities in full.
    Rius J; Figueras M; Herrero R; Farjas J; Pi F; Orriols G
    Chaos; 2000 Dec; 10(4):760-770. PubMed ID: 12779426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solitary waves in a granular chain of elastic spheres: Multiple solitary solutions and their stabilities.
    Liu ZG; Wang YS; Huang G
    Phys Rev E; 2019 Jun; 99(6-1):062904. PubMed ID: 31330644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear Dirac equation solitary waves in external fields.
    Mertens FG; Quintero NR; Cooper F; Khare A; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046602. PubMed ID: 23214703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forced nonlinear Schrödinger equation with arbitrary nonlinearity.
    Cooper F; Khare A; Quintero NR; Mertens FG; Saxena A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046607. PubMed ID: 22680598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.