These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22587248)

  • 1. High-accuracy measurement of atomic polarizability in an optical lattice clock.
    Sherman JA; Lemke ND; Hinkley N; Pizzocaro M; Fox RW; Ludlow AD; Oates CW
    Phys Rev Lett; 2012 Apr; 108(15):153002. PubMed ID: 22587248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.
    Beloy K; Hinkley N; Phillips NB; Sherman JA; Schioppo M; Lehman J; Feldman A; Hanssen LM; Oates CW; Ludlow AD
    Phys Rev Lett; 2014 Dec; 113(26):260801. PubMed ID: 25615296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High accuracy correction of blackbody radiation shift in an optical lattice clock.
    Middelmann T; Falke S; Lisdat C; Sterr U
    Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stark shift of the Cs clock transition frequency: a new experimental approach.
    Robyr JL; Knowles P; Weis A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect.
    Dubé P; Madej AA; Tibbo M; Bernard JE
    Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks.
    Ovsiannikov VD; Derevianko A; Gibble K
    Phys Rev Lett; 2011 Aug; 107(9):093003. PubMed ID: 21929236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scheme for Quantum-Logic Based Transfer of Accuracy in Polarizability Measurement for Trapped Ions Using a Moving Optical Lattice.
    Wolf F
    Phys Rev Lett; 2024 Feb; 132(8):083202. PubMed ID: 38457716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
    Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadruply Ionized Barium as a Candidate for a High-Accuracy Optical Clock.
    Beloy K; Dzuba VA; Brewer SM
    Phys Rev Lett; 2020 Oct; 125(17):173002. PubMed ID: 33156679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift.
    Golovizin A; Fedorova E; Tregubov D; Sukachev D; Khabarova K; Sorokin V; Kolachevsky N
    Nat Commun; 2019 Apr; 10(1):1724. PubMed ID: 30979896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optical lattice clock with accuracy and stability at the 10(-18) level.
    Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J
    Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blackbody radiation shift assessment for a lutetium ion clock.
    Arnold KJ; Kaewuam R; Roy A; Tan TR; Barrett MD
    Nat Commun; 2018 Apr; 9(1):1650. PubMed ID: 29695720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision measurement of fermionic collisions using an 87Sr optical lattice clock with 1 x 10(-16) inaccuracy.
    Swallows MD; Campbell GK; Ludlow AD; Boyd MM; Thomsen JW; Martin MJ; Blatt S; Nicholson TL; Ye J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):574-82. PubMed ID: 20211772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty.
    Nicholson TL; Campbell SL; Hutson RB; Marti GE; Bloom BJ; McNally RL; Zhang W; Barrett MD; Safronova MS; Strouse GF; Tew WL; Ye J
    Nat Commun; 2015 Apr; 6():6896. PubMed ID: 25898253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty.
    Huntemann N; Sanner C; Lipphardt B; Tamm C; Peik E
    Phys Rev Lett; 2016 Feb; 116(6):063001. PubMed ID: 26918984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-1/2 optical lattice clock.
    Lemke ND; Ludlow AD; Barber ZW; Fortier TM; Diddams SA; Jiang Y; Jefferts SR; Heavner TP; Parker TE; Oates CW
    Phys Rev Lett; 2009 Aug; 103(6):063001. PubMed ID: 19792559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.