BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 2258738)

  • 1. Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1990 Oct; 64(4):1134-48. PubMed ID: 2258738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate antagonists applied to midbody spinal cord segments reduce the excitability of the fictive rostral scratch reflex in the turtle.
    Currie SN; Stein PS
    Brain Res; 1992 May; 581(1):91-100. PubMed ID: 1354009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutaneous dermatomes for initiation of three forms of the scratch reflex in the spinal turtle.
    Mortin LI; Stein PS
    J Comp Neurol; 1990 May; 295(4):515-29. PubMed ID: 2358518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical activation of the pocket scratch central pattern generator in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1988 Dec; 60(6):2122-37. PubMed ID: 3236064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle.
    Mortin LI; Stein PS
    J Neurosci; 1989 Jul; 9(7):2285-96. PubMed ID: 2746329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scratch-swim hybrids in the spinal turtle: blending of rostral scratch and forward swim.
    Earhart GM; Stein PS
    J Neurophysiol; 2000 Jan; 83(1):156-65. PubMed ID: 10634862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis.
    Currie SN; Gonsalves GG
    J Neurophysiol; 1999 Jun; 81(6):2977-87. PubMed ID: 10368414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface.
    Berkowitz A; Stein PS
    J Neurosci; 1994 Aug; 14(8):5089-104. PubMed ID: 8046470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nociceptive response to innocuous mechanical stimulation is mediated via myelinated afferents and NK-1 receptor activation in a rat model of neuropathic pain.
    Pitcher GM; Henry JL
    Exp Neurol; 2004 Apr; 186(2):173-97. PubMed ID: 15026255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection.
    Stein PS; McCullough ML; Currie SN
    J Neurosci; 1998 Jan; 18(1):467-79. PubMed ID: 9412523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reticulospinal actions on primary afferent depolarization of cutaneous and muscle afferents in the isolated frog neuraxis.
    González H; Jiménez I; Rudomin P
    Exp Brain Res; 1993; 95(2):261-70. PubMed ID: 8224051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadly tuned spinal neurons for each form of fictive scratching in spinal turtles.
    Berkowitz A
    J Neurophysiol; 2001 Aug; 86(2):1017-25. PubMed ID: 11495969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat.
    Lewin GR; McMahon SB
    J Neurophysiol; 1991 Oct; 66(4):1205-17. PubMed ID: 1761980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties and distribution of peripherally evoked presynaptic hyperpolarization in cat lumbar spinal cord.
    Mendell L
    J Physiol; 1972 Nov; 226(3):769-92. PubMed ID: 4637629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional properties of spinal interneurons activated by muscular free nerve endings and their potential contributions to the clasp-knife reflex.
    Cleland CL; Rymer WZ
    J Neurophysiol; 1993 Apr; 69(4):1181-91. PubMed ID: 8492157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically evoked fictive swimming in the low-spinal immobilized turtle.
    Juranek J; Currie SN
    J Neurophysiol; 2000 Jan; 83(1):146-55. PubMed ID: 10634861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle afferents innervating skin form somatotopically appropriate connections in the adult rat dorsal horn.
    Lewin GR; McMahon SB
    Eur J Neurosci; 1993 Aug; 5(8):1083-92. PubMed ID: 8281312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN
    J Physiol Paris; 1999; 93(3):199-211. PubMed ID: 10399675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.