These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22587434)

  • 1. On high-cycle fatigue of 316L stents.
    Barrera O; Makradi A; Abbadi M; Azaouzi M; Belouettar S
    Comput Methods Biomech Biomed Engin; 2014; 17(3):239-50. PubMed ID: 22587434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element comparison of performance related characteristics of balloon expandable stents.
    Donnelly EW; Bruzzi MS; Connolley T; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):103-10. PubMed ID: 18651276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement.
    Morlacchi S; Pennati G; Petrini L; Dubini G; Migliavacca F
    J Biomech; 2014 Mar; 47(4):899-907. PubMed ID: 24468208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis.
    Marrey RV; Burgermeister R; Grishaber RB; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):1988-2000. PubMed ID: 16260033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses.
    Dordoni E; Meoli A; Wu W; Dubini G; Migliavacca F; Pennati G; Petrini L
    Med Eng Phys; 2014 Jul; 36(7):842-9. PubMed ID: 24721457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale mechanical investigation of stainless steel and cobalt-chromium stents.
    Kapnisis K; Constantinides G; Georgiou H; Cristea D; Gabor C; Munteanu D; Brott B; Anderson P; Lemons J; Anayiotos A
    J Mech Behav Biomed Mater; 2014 Dec; 40():240-251. PubMed ID: 25255419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis for fatigue behaviour of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions.
    Lei L; Qi X; Li S; Yang Y; Hu Y; Li B; Zhao S; Zhang Y
    Comput Biol Med; 2019 Jan; 104():205-214. PubMed ID: 30529572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents.
    Hsiao HM; Yin MT
    Biomed Microdevices; 2014 Feb; 16(1):133-41. PubMed ID: 24045977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity-damage model approach.
    Argente dos Santos HA; Auricchio F; Conti M
    J Mech Behav Biomed Mater; 2012 Nov; 15():78-92. PubMed ID: 23032428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental characterisation for micromechanical modelling of CoCr stent fatigue.
    Sweeney CA; O'Brien B; McHugh PE; Leen SB
    Biomaterials; 2014 Jan; 35(1):36-48. PubMed ID: 24120042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.
    Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF
    Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stress-strain behavior of coronary stent struts is size dependent.
    Murphy BP; Savage P; McHugh PE; Quinn DF
    Ann Biomed Eng; 2003 Jun; 31(6):686-91. PubMed ID: 12797618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue behavior of stent in tapered arteries: The role of arterial tapering and stent material.
    Shen X; Zhu H; Ji S; Jiang J; Deng Y
    Proc Inst Mech Eng H; 2019 Oct; 233(10):989-998. PubMed ID: 31277553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational mechanics of Nitinol stent grafts.
    Kleinstreuer C; Li Z; Basciano CA; Seelecke S; Farber MA
    J Biomech; 2008 Aug; 41(11):2370-8. PubMed ID: 18644312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue-life assessment and validation techniques for metallic vascular implants.
    James BA; Sire RA
    Biomaterials; 2010 Jan; 31(2):181-6. PubMed ID: 19875165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.