BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22587464)

  • 1. Self-expanding stent modelling and radial force accuracy.
    Ghriallais RN; Bruzzi M
    Comput Methods Biomech Biomed Engin; 2014; 17(4):318-33. PubMed ID: 22587464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.
    Cabrera MS; Oomens CW; Baaijens FP
    J Mech Behav Biomed Mater; 2017 Apr; 68():252-264. PubMed ID: 28219851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis.
    Wu W; Qi M; Liu XP; Yang DZ; Wang WQ
    J Biomech; 2007; 40(13):3034-40. PubMed ID: 17511995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of computational modelling techniques for braided stent analysis.
    Kelly N; McGrath DJ; Sweeney CA; Kurtenbach K; Grogan JA; Jockenhoevel S; O'Brien BJ; Bruzzi M; McHugh PE
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1334-1344. PubMed ID: 31502888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitinol Stent Oversizing in Patients Undergoing Popliteal Artery Revascularization: A Finite Element Study.
    Gökgöl C; Diehm N; Nezami FR; Büchler P
    Ann Biomed Eng; 2015 Dec; 43(12):2868-80. PubMed ID: 26101031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of self-expanding nitinol stent in a curved artery: impact of stent length and deployment orientation.
    Zhao S; Gu L; Froemming SR
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the importance of modeling stent procedure for predicting arterial mechanics.
    Zhao S; Gu L; Froemming SR
    J Biomech Eng; 2012 Dec; 134(12):121005. PubMed ID: 23363207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation.
    He R; Zhao LG; Silberschmidt VV; Liu Y; Vogt F
    Biomech Model Mechanobiol; 2020 Feb; 19(1):47-60. PubMed ID: 31317295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of the mechanical performance of self-expanding endovascular stents made with new nickel-free superelastic β-titanium alloys.
    Jia T; Guines D; Laillé D; Leotoing L; Gloriant T
    J Mech Behav Biomed Mater; 2024 Mar; 151():106345. PubMed ID: 38215658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational mechanics of Nitinol stent grafts.
    Kleinstreuer C; Li Z; Basciano CA; Seelecke S; Farber MA
    J Biomech; 2008 Aug; 41(11):2370-8. PubMed ID: 18644312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent.
    García A; Peña E; Martínez MA
    J Mech Behav Biomed Mater; 2012 Jun; 10():166-75. PubMed ID: 22520428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Looped ends versus open ends braided stent: A comparison of the mechanical behaviour using analytical and numerical methods.
    Shanahan C; Tiernan P; Tofail SAM
    J Mech Behav Biomed Mater; 2017 Nov; 75():581-591. PubMed ID: 28863400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitinol stent design - understanding axial buckling.
    McGrath DJ; O Brien B; Bruzzi M; McHugh PE
    J Mech Behav Biomed Mater; 2014 Dec; 40():252-263. PubMed ID: 25255420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Framework Examining the Mechanical Behaviour of Bare and Polymer-Covered Self-Expanding Laser-Cut Stents.
    McKenna CG; Vaughan TJ
    Cardiovasc Eng Technol; 2022 Jun; 13(3):466-480. PubMed ID: 34850370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of two different stent configurations.
    Simão M; Ferreira JM; Mora-Rodriguez J; Ramos HM
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):869-883. PubMed ID: 28317393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements?
    Luraghi G; Bridio S; Migliavacca F; Rodriguez Matas JF
    Med Eng Phys; 2022 Aug; 106():103836. PubMed ID: 35926960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents.
    Wang Q; Fang G; Zhao Y; Wang G; Cai T
    J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational study of stent performance by considering vessel anisotropy and residual stresses.
    Schiavone A; Zhao LG
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():307-16. PubMed ID: 26952428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.