BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22587464)

  • 21. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation.
    Schiavone A; Zhao LG; Abdel-Wahab AA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recommendations for finite element modelling of nickel-titanium stents-Verification and validation activities.
    Bernini M; Hellmuth R; Dunlop C; Ronan W; Vaughan TJ
    PLoS One; 2023; 18(8):e0283492. PubMed ID: 37556457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of coefficient of friction for self-expanding stent-grafts.
    Vad S; Eskinazi A; Corbett T; McGloughlin T; Vande Geest JP
    J Biomech Eng; 2010 Dec; 132(12):121007. PubMed ID: 21142321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination effect of two different NiTi stents on the vessel wall and studying their flexibility using finite element method.
    Salemizadehparizi F; Mehrabi R
    Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1520-1530. PubMed ID: 34967243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of a mechanobiological simulation technique to stents used clinically.
    Boyle CJ; Lennon AB; Prendergast PJ
    J Biomech; 2013 Mar; 46(5):918-24. PubMed ID: 23398970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radial forces of stents used in thoracic endovascular aortic repair and bare self-expanding nitinol stents measured ex vivo - Rapid rescue for obstruction of the innominate artery using bare self-expanding nitinol stents.
    Matsumoto T; Inoue K; Tanaka S; Aoyagi Y; Matsubara Y; Matsuda D; Yoshiya K; Yoshiga R; Ohkusa T; Maehara Y
    Vascular; 2017 Feb; 25(1):36-41. PubMed ID: 26993143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A methodology for the customized design of colonic stents based on a parametric model.
    Puértolas S; Navallas D; Herrera A; López E; Millastre J; Ibarz E; Gabarre S; Puértolas JA; Gracia L
    J Mech Behav Biomed Mater; 2017 Jul; 71():250-261. PubMed ID: 28365542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Finite Element Analysis of Effect of Key Dimension of Nitinol Stent on Its Fatigue Behaviour].
    Li J; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Apr; 32(2):305-10. PubMed ID: 26211245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virtual bench testing of new generation coronary stents.
    Mortier P; De Beule M; Segers P; Verdonck P; Verhegghe B
    EuroIntervention; 2011 Jul; 7(3):369-76. PubMed ID: 21729840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational modeling of braided venous stents - Effect of design features and device-tissue interaction on stent performance.
    Ubachs R; van der Sluis O; Smith S; Mertens J
    J Mech Behav Biomed Mater; 2023 Jun; 142():105857. PubMed ID: 37099918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Audi SH; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2004 Jul; 97(1):424-30; discussion 416. PubMed ID: 14766776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy.
    Zahedmanesh H; John Kelly D; Lally C
    J Biomech; 2010 Aug; 43(11):2126-32. PubMed ID: 20452594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes.
    Zahedmanesh H; Van Oosterwyck H; Lally C
    Comput Methods Biomech Biomed Engin; 2014; 17(8):813-28. PubMed ID: 22967148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro evaluation of the radial and axial force of self-expanding esophageal stents.
    Hirdes MM; Vleggaar FP; de Beule M; Siersema PD
    Endoscopy; 2013 Dec; 45(12):997-1005. PubMed ID: 24288220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts.
    Perrin D; Badel P; Orgeas L; Geindreau C; du Roscoat SR; Albertini JN; Avril S
    J Mech Behav Biomed Mater; 2016 Oct; 63():86-99. PubMed ID: 27344232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution.
    Bukala J; Kwiatkowski P; Malachowski J
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool.
    Perrin D; Demanget N; Badel P; Avril S; Orgéas L; Geindreau C; Albertini JN
    Int J Numer Method Biomed Eng; 2015 Jan; 31(1):e02698. PubMed ID: 25399927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.