These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22587527)
1. Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility. Shih CJ; Paulus GL; Wang QH; Jin Z; Blankschtein D; Strano MS Langmuir; 2012 Jun; 28(22):8579-86. PubMed ID: 22587527 [TBL] [Abstract][Full Text] [Related]
2. Hysteresis of electronic transport in graphene transistors. Wang H; Wu Y; Cong C; Shang J; Yu T ACS Nano; 2010 Dec; 4(12):7221-8. PubMed ID: 21047068 [TBL] [Abstract][Full Text] [Related]
4. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO₂ substrates using Raman spectroscopy. Xu H; Chen Y; Zhang J; Zhang H Small; 2012 Sep; 8(18):2833-40. PubMed ID: 22678822 [TBL] [Abstract][Full Text] [Related]
5. Solution-processable organic dielectrics for graphene electronics. Mattevi C; Colléaux F; Kim H; Lin YH; Park KT; Chhowalla M; Anthopoulos TD Nanotechnology; 2012 Aug; 23(34):344017. PubMed ID: 22885685 [TBL] [Abstract][Full Text] [Related]
6. Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Fan XY; Nouchi R; Yin LC; Tanigaki K Nanotechnology; 2010 Nov; 21(47):475208. PubMed ID: 21030765 [TBL] [Abstract][Full Text] [Related]
7. N-doped graphene field-effect transistors with enhanced electron mobility and air-stability. Xu W; Lim TS; Seo HK; Min SY; Cho H; Park MH; Kim YH; Lee TW Small; 2014 May; 10(10):1999-2005. PubMed ID: 24616289 [TBL] [Abstract][Full Text] [Related]
8. Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors. Di Bartolomeo A; Giubileo F; Santandrea S; Romeo F; Citro R; Schroeder T; Lupina G Nanotechnology; 2011 Jul; 22(27):275702. PubMed ID: 21597135 [TBL] [Abstract][Full Text] [Related]
9. Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces. Cervenka J; Budi A; Dontschuk N; Stacey A; Tadich A; Rietwyk KJ; Schenk A; Edmonds MT; Yin Y; Medhekar N; Kalbac M; Pakes CI Nanoscale; 2015 Jan; 7(4):1471-8. PubMed ID: 25502349 [TBL] [Abstract][Full Text] [Related]
10. Modification of graphene/SiO2 interface by UV-irradiation: effect on electrical characteristics. Imamura G; Saiki K ACS Appl Mater Interfaces; 2015 Feb; 7(4):2439-43. PubMed ID: 25569142 [TBL] [Abstract][Full Text] [Related]
11. Approaching ballistic transport in suspended graphene. Du X; Skachko I; Barker A; Andrei EY Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637 [TBL] [Abstract][Full Text] [Related]
12. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. Joshi P; Romero HE; Neal AT; Toutam VK; Tadigadapa SA J Phys Condens Matter; 2010 Aug; 22(33):334214. PubMed ID: 21386504 [TBL] [Abstract][Full Text] [Related]
13. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. Lin S; Shih CJ; Strano MS; Blankschtein D J Am Chem Soc; 2011 Aug; 133(32):12810-23. PubMed ID: 21736367 [TBL] [Abstract][Full Text] [Related]
14. Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. Yuan H; Shimotani H; Tsukazaki A; Ohtomo A; Kawasaki M; Iwasa Y J Am Chem Soc; 2010 May; 132(19):6672-8. PubMed ID: 20459143 [TBL] [Abstract][Full Text] [Related]
16. Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications. Chen F; Qing Q; Xia J; Tao N Chem Asian J; 2010 Oct; 5(10):2144-53. PubMed ID: 20715049 [TBL] [Abstract][Full Text] [Related]
17. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. Du A; Sanvito S; Li Z; Wang D; Jiao Y; Liao T; Sun Q; Ng YH; Zhu Z; Amal R; Smith SC J Am Chem Soc; 2012 Mar; 134(9):4393-7. PubMed ID: 22339061 [TBL] [Abstract][Full Text] [Related]
18. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions. Fu Q; Liu J Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254 [TBL] [Abstract][Full Text] [Related]
19. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation. Shih CJ; Wang QH; Son Y; Jin Z; Blankschtein D; Strano MS ACS Nano; 2014 Jun; 8(6):5790-8. PubMed ID: 24824139 [TBL] [Abstract][Full Text] [Related]
20. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. Fanton MA; Robinson JA; Puls C; Liu Y; Hollander MJ; Weiland BE; Labella M; Trumbull K; Kasarda R; Howsare C; Stitt J; Snyder DW ACS Nano; 2011 Oct; 5(10):8062-9. PubMed ID: 21905713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]