These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 22587670)
1. Application of microflow conditions to visible light photoredox catalysis. Neumann M; Zeitler K Org Lett; 2012 Jun; 14(11):2658-61. PubMed ID: 22587670 [TBL] [Abstract][Full Text] [Related]
2. Rapid trifluoromethylation and perfluoroalkylation of five-membered heterocycles by photoredox catalysis in continuous flow. Straathof NJ; Gemoets HP; Wang X; Schouten JC; Hessel V; Noël T ChemSusChem; 2014 Jun; 7(6):1612-7. PubMed ID: 24706388 [TBL] [Abstract][Full Text] [Related]
3. A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Wang X; Cuny GD; Noël T Angew Chem Int Ed Engl; 2013 Jul; 52(30):7860-4. PubMed ID: 23784666 [TBL] [Abstract][Full Text] [Related]
4. Radical carbon-carbon bond formations enabled by visible light active photocatalysts. Wallentin CJ; Nguyen JD; Stephenson CR Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282 [TBL] [Abstract][Full Text] [Related]
5. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Nicewicz DA; MacMillan DW Science; 2008 Oct; 322(5898):77-80. PubMed ID: 18772399 [TBL] [Abstract][Full Text] [Related]
6. Oxidative C-C bond cleavage of aldehydes via visible-light photoredox catalysis. Sun H; Yang C; Gao F; Li Z; Xia W Org Lett; 2013 Feb; 15(3):624-7. PubMed ID: 23311894 [TBL] [Abstract][Full Text] [Related]
7. Visible-light promoted photoredox catalysis in flow: addition of biologically important α‑amino radicals to michael acceptors. Filipović A; Džambaski Z; Bondžić AM; Bondžić BP Photochem Photobiol Sci; 2023 Oct; 22(10):2259-2270. PubMed ID: 37340217 [TBL] [Abstract][Full Text] [Related]
8. Sensitization-Initiated Electron Transfer for Photoredox Catalysis. Ghosh I; Shaikh RS; König B Angew Chem Int Ed Engl; 2017 Jul; 56(29):8544-8549. PubMed ID: 28544442 [TBL] [Abstract][Full Text] [Related]
9. Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, α-halo-, and α,α-dibromocarbonyl compounds. Maji T; Karmakar A; Reiser O J Org Chem; 2011 Jan; 76(2):736-9. PubMed ID: 21192632 [TBL] [Abstract][Full Text] [Related]
10. Photoassisted oxidation of ruthenium(II)-photocatalysts Ru(bpy)3(2+) and Ru(bpz)3(2+) to RuO4: orthogonal tandem photoredox and oxidation catalysis. Alpers D; Gallhof M; Stark CB; Brasholz M Chem Commun (Camb); 2016 Jan; 52(5):1025-8. PubMed ID: 26592543 [TBL] [Abstract][Full Text] [Related]
11. Catalytic Enantioselective Radical Transformations Enabled by Visible Light. Saha D Chem Asian J; 2020 Jul; 15(14):2129-2152. PubMed ID: 32463981 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric photoredox transition-metal catalysis activated by visible light. Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679 [TBL] [Abstract][Full Text] [Related]
13. Direct C-F bond formation using photoredox catalysis. Rueda-Becerril M; Mahé O; Drouin M; Majewski MB; West JG; Wolf MO; Sammis GM; Paquin JF J Am Chem Soc; 2014 Feb; 136(6):2637-41. PubMed ID: 24437369 [TBL] [Abstract][Full Text] [Related]