These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22587670)

  • 1. Application of microflow conditions to visible light photoredox catalysis.
    Neumann M; Zeitler K
    Org Lett; 2012 Jun; 14(11):2658-61. PubMed ID: 22587670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid trifluoromethylation and perfluoroalkylation of five-membered heterocycles by photoredox catalysis in continuous flow.
    Straathof NJ; Gemoets HP; Wang X; Schouten JC; Hessel V; Noël T
    ChemSusChem; 2014 Jun; 7(6):1612-7. PubMed ID: 24706388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow.
    Wang X; Cuny GD; Noël T
    Angew Chem Int Ed Engl; 2013 Jul; 52(30):7860-4. PubMed ID: 23784666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes.
    Nicewicz DA; MacMillan DW
    Science; 2008 Oct; 322(5898):77-80. PubMed ID: 18772399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative C-C bond cleavage of aldehydes via visible-light photoredox catalysis.
    Sun H; Yang C; Gao F; Li Z; Xia W
    Org Lett; 2013 Feb; 15(3):624-7. PubMed ID: 23311894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible-light promoted photoredox catalysis in flow: addition of biologically important α‑amino radicals to michael acceptors.
    Filipović A; Džambaski Z; Bondžić AM; Bondžić BP
    Photochem Photobiol Sci; 2023 Oct; 22(10):2259-2270. PubMed ID: 37340217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitization-Initiated Electron Transfer for Photoredox Catalysis.
    Ghosh I; Shaikh RS; König B
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8544-8549. PubMed ID: 28544442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, α-halo-, and α,α-dibromocarbonyl compounds.
    Maji T; Karmakar A; Reiser O
    J Org Chem; 2011 Jan; 76(2):736-9. PubMed ID: 21192632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoassisted oxidation of ruthenium(II)-photocatalysts Ru(bpy)3(2+) and Ru(bpz)3(2+) to RuO4: orthogonal tandem photoredox and oxidation catalysis.
    Alpers D; Gallhof M; Stark CB; Brasholz M
    Chem Commun (Camb); 2016 Jan; 52(5):1025-8. PubMed ID: 26592543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Enantioselective Radical Transformations Enabled by Visible Light.
    Saha D
    Chem Asian J; 2020 Jul; 15(14):2129-2152. PubMed ID: 32463981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct C-F bond formation using photoredox catalysis.
    Rueda-Becerril M; Mahé O; Drouin M; Majewski MB; West JG; Wolf MO; Sammis GM; Paquin JF
    J Am Chem Soc; 2014 Feb; 136(6):2637-41. PubMed ID: 24437369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible light photoredox catalysis: applications in organic synthesis.
    Narayanam JM; Stephenson CR
    Chem Soc Rev; 2011 Jan; 40(1):102-13. PubMed ID: 20532341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.
    Straathof NJ; Su Y; Hessel V; Noël T
    Nat Protoc; 2016 Jan; 11(1):10-21. PubMed ID: 26633128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction.
    Narayanam JM; Tucker JW; Stephenson CR
    J Am Chem Soc; 2009 Jul; 131(25):8756-7. PubMed ID: 19552447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis.
    Hopkinson MN; Sahoo B; Li JL; Glorius F
    Chemistry; 2014 Apr; 20(14):3874-86. PubMed ID: 24596102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible light photoredox catalysis: generation and addition of N-aryltetrahydroisoquinoline-derived α-amino radicals to Michael acceptors.
    Kohls P; Jadhav D; Pandey G; Reiser O
    Org Lett; 2012 Feb; 14(3):672-5. PubMed ID: 22260623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent synthetic additions to the visible light photoredox catalysis toolbox.
    Angnes RA; Li Z; Correia CR; Hammond GB
    Org Biomol Chem; 2015 Sep; 13(35):9152-67. PubMed ID: 26242759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible Light Driven Photocascade Catalysis: Ru(bpy)3(PF6)2/TBHP-Mediated Synthesis of Fused β-Carbolines in Batch and Flow Microreactors.
    Chandrasekhar D; Borra S; Nanubolu JB; Maurya RA
    Org Lett; 2016 Jun; 18(12):2974-7. PubMed ID: 27226119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.