These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 22587710)
1. Theoretical study on polynuclear superalkali cations with various functional groups as the central core. Tong J; Li Y; Wu D; Wu ZJ Inorg Chem; 2012 Jun; 51(11):6081-8. PubMed ID: 22587710 [TBL] [Abstract][Full Text] [Related]
2. Prediction and characterization of novel polynuclear superalkali cations. Tong J; Wu Z; Li Y; Wu D Dalton Trans; 2013 Jan; 42(2):577-84. PubMed ID: 23104219 [TBL] [Abstract][Full Text] [Related]
3. Ab initio investigation on a new class of binuclear superalkali cations M2Li(2k+1)+ (F2Li3+, O2Li5+, N2Li7+, and C2Li9+). Tong J; Li Y; Wu D; Li ZR; Huang XR J Phys Chem A; 2011 Mar; 115(10):2041-6. PubMed ID: 21332234 [TBL] [Abstract][Full Text] [Related]
4. Trivalent acid radical-centered YLi4(+) (Y = PO4, AsO4, VO4) cations: new polynuclear species designed to enrich the superalkali family. Liu JY; Wu D; Sun WM; Li Y; Li ZR Dalton Trans; 2014 Dec; 43(48):18066-73. PubMed ID: 25353318 [TBL] [Abstract][Full Text] [Related]
7. Superalkali character of alkali-monocyclic (pseudo)oxocarbon clusters. Tong J; Wu D; Li Y; Wang Y; Wu Z Dalton Trans; 2013 Jul; 42(27):9982-9. PubMed ID: 23708303 [TBL] [Abstract][Full Text] [Related]
8. Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state. Korobkov I; Gorelsky S; Gambarotta S J Am Chem Soc; 2009 Aug; 131(30):10406-20. PubMed ID: 19588963 [TBL] [Abstract][Full Text] [Related]
9. O Srivastava AK J Mol Graph Model; 2019 May; 88():292-298. PubMed ID: 30826709 [TBL] [Abstract][Full Text] [Related]
10. On the feasibility of designing hyperalkali cations using superalkali clusters as ligands. Sun WM; Li XH; Li Y; Liu JY; Wu D; Li CY; Ni BL; Li ZR J Chem Phys; 2016 Nov; 145(19):194303. PubMed ID: 27875882 [TBL] [Abstract][Full Text] [Related]
11. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. Zhong Z; Ouyang C; Shi S; Lei M Chemphyschem; 2008 Oct; 9(14):2104-8. PubMed ID: 18729122 [TBL] [Abstract][Full Text] [Related]
12. Electrophilic attack on sulfur-sulfur bonds: coordination of lithium cations to sulfur-rich molecules studied by ab initio MO methods. Steudel Y; Wong MW; Steudel R Chemistry; 2005 Feb; 11(4):1281-93. PubMed ID: 15627950 [TBL] [Abstract][Full Text] [Related]
13. Interpretation of the photoelectron spectra of superalkali species: Na3O and Na3O-. Zein S; Ortiz JV J Chem Phys; 2012 Jun; 136(22):224305. PubMed ID: 22713045 [TBL] [Abstract][Full Text] [Related]
14. Novel and Polynuclear K- and Na-Based Superalkali Hydroxides as Superbases Better Than Li-Related Species and Their Enhanced Properties: An Ab Initio Exploration. Pandey SK ACS Omega; 2021 Nov; 6(46):31077-31092. PubMed ID: 34841150 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. Sun YK; Myung ST; Kim MH; Prakash J; Amine K J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775 [TBL] [Abstract][Full Text] [Related]
16. Structures and static electric properties of novel alkalide anions F-Li+Li- and F-Li3+Li3-. Wang BQ; Li ZR; Wu D; Wang FF J Phys Chem A; 2007 Jul; 111(28):6378-82. PubMed ID: 17580832 [TBL] [Abstract][Full Text] [Related]