These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22587720)

  • 1. Physiological and metabolic responses to increasing work rates: relevance for exercise prescription.
    Dennis SC; Noakes TD
    J Sports Sci; 1998 Jan; 16 Suppl():S77-84. PubMed ID: 22587720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.
    Perry CG; Heigenhauser GJ; Bonen A; Spriet LL
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1112-23. PubMed ID: 19088769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise.
    Christmass MA; Dawson B; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):436-47. PubMed ID: 10502077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prior heavy exercise eliminates VO2 slow component and reduces efficiency during submaximal exercise in humans.
    Sahlin K; Sørensen JB; Gladden LB; Rossiter HB; Pedersen PK
    J Physiol; 2005 May; 564(Pt 3):765-73. PubMed ID: 15746165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Enhancement: What Are the Physiological Limits?
    Lundby C; Robach P
    Physiology (Bethesda); 2015 Jul; 30(4):282-92. PubMed ID: 26136542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Non-invasive determination of human oxygen metabolism during exercise].
    Su C; Ding H; Wang P; Feng W; Feng M; Cao J
    Space Med Med Eng (Beijing); 1998 Apr; 11(2):92-6. PubMed ID: 11543236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prior heavy-intensity exercise's enhancement of oxygen-uptake kinetics and short-term high-intensity exercise performance independent of aerobic-training status.
    Caritá RA; Greco CC; Denadai BS
    Int J Sports Physiol Perform; 2015 Apr; 10(3):339-45. PubMed ID: 25203458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training high--living low: changes of aerobic performance and muscle structure with training at simulated altitude.
    Geiser J; Vogt M; Billeter R; Zuleger C; Belforti F; Hoppeler H
    Int J Sports Med; 2001 Nov; 22(8):579-85. PubMed ID: 11719893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1996 J.B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi.
    Noakes TD
    Med Sci Sports Exerc; 1997 May; 29(5):571-90. PubMed ID: 9140893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle energy metabolism during exercise.
    Hargreaves M; Spriet LL
    Nat Metab; 2020 Sep; 2(9):817-828. PubMed ID: 32747792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced volume and increased training intensity elevate muscle Na+-K+ pump alpha2-subunit expression as well as short- and long-term work capacity in humans.
    Bangsbo J; Gunnarsson TP; Wendell J; Nybo L; Thomassen M
    J Appl Physiol (1985); 2009 Dec; 107(6):1771-80. PubMed ID: 19797693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance.
    Noakes TD
    Scand J Med Sci Sports; 2000 Jun; 10(3):123-45. PubMed ID: 10843507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.
    Burgomaster KA; Heigenhauser GJ; Gibala MJ
    J Appl Physiol (1985); 2006 Jun; 100(6):2041-7. PubMed ID: 16469933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of exercise-induced muscle damage on cycling time-trial performance.
    Burt DG; Twist C
    J Strength Cond Res; 2011 Aug; 25(8):2185-92. PubMed ID: 21572353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximal oxygen uptake: "classical" versus "contemporary" viewpoints: a rebuttal.
    Noakes TD
    Med Sci Sports Exerc; 1998 Sep; 30(9):1381-98. PubMed ID: 9741607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion].
    Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV
    Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid upregulation of pyruvate dehydrogenase kinase activity in human skeletal muscle during prolonged exercise.
    Watt MJ; Heigenhauser GJ; LeBlanc PJ; Inglis JG; Spriet LL; Peters SJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1261-7. PubMed ID: 15169745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise.
    Peake JM; Tan SJ; Markworth JF; Broadbent JA; Skinner TL; Cameron-Smith D
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(7):E539-52. PubMed ID: 25096178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance.
    Bailey SJ; Vanhatalo A; DiMenna FJ; Wilkerson DP; Jones AM
    Med Sci Sports Exerc; 2011 Mar; 43(3):457-67. PubMed ID: 20689463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.