BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22587931)

  • 1. Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm.
    Baird FJ; Wadsworth MP; Hill JE
    J Microbiol Methods; 2012 Sep; 90(3):192-6. PubMed ID: 22587931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis.
    Takenaka S; Iwaku M; Hoshino E
    J Infect Chemother; 2001 Jun; 7(2):87-93. PubMed ID: 11455498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Observation of Pseudomonas aeruginosa biofilm with confocal laser scanning microscope].
    Watanabe T
    Kansenshogaku Zasshi; 1995 Jan; 69(1):114-22. PubMed ID: 7538553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.
    Swearingen MC; Mehta A; Mehta A; Nistico L; Hill PJ; Falzarano AR; Wozniak DJ; Hall-Stoodley L; Stoodley P
    Pathog Dis; 2016 Feb; 74(1):ftv104. PubMed ID: 26536894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms.
    Neu TR; Kuhlicke U; Lawrence JR
    Appl Environ Microbiol; 2002 Feb; 68(2):901-9. PubMed ID: 11823234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms.
    Hunter RC; Beveridge TJ
    Appl Environ Microbiol; 2005 May; 71(5):2501-10. PubMed ID: 15870340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous confocal recording of multiple fluorescent labels with improved channel separation.
    Carlsson K; Aslund N; Mossberg K; Philip J
    J Microsc; 1994 Dec; 176(Pt 3):287-99. PubMed ID: 7869367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of microbiological processes underlying stress relaxation in Pseudomonas aeruginosa biofilms.
    Peterson BW; Busscher HJ; Sharma PK; van der Mei HC
    Microsc Microanal; 2014 Jun; 20(3):912-5. PubMed ID: 24621783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms.
    Forier K; Messiaen AS; Raemdonck K; Nelis H; De Smedt S; Demeester J; Coenye T; Braeckmans K
    J Control Release; 2014 Dec; 195():21-8. PubMed ID: 25125326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy.
    Pamp SJ; Sternberg C; Tolker-Nielsen T
    Cytometry A; 2009 Feb; 75(2):90-103. PubMed ID: 19051241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: application to whole blood assays.
    Aslan K; Zhang Y; Geddes CD
    Anal Chem; 2009 May; 81(10):3801-8. PubMed ID: 19354285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of confocal laser scanning microscopy in deciphering biofilm tridimensional structure and reactivity.
    Bridier A; Briandet R
    Methods Mol Biol; 2014; 1147():255-66. PubMed ID: 24664839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide.
    Stiefel P; Schmidt-Emrich S; Maniura-Weber K; Ren Q
    BMC Microbiol; 2015 Feb; 15():36. PubMed ID: 25881030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal microscopy imaging of the biofilm matrix.
    Schlafer S; Meyer RL
    J Microbiol Methods; 2017 Jul; 138():50-59. PubMed ID: 26979645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms.
    Klausen M; Aaes-Jørgensen A; Molin S; Tolker-Nielsen T
    Mol Microbiol; 2003 Oct; 50(1):61-8. PubMed ID: 14507363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of bacterial cells and glycocalyx in biofilms on human tonsils.
    Kania RE; Lamers GE; Vonk MJ; Huy PT; Hiemstra PS; Bloemberg GV; Grote JJ
    Arch Otolaryngol Head Neck Surg; 2007 Feb; 133(2):115-21. PubMed ID: 17309977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning.
    McRae TD; Oleksyn D; Miller J; Gao YR
    PLoS One; 2019; 14(12):e0225410. PubMed ID: 31790435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue 'turn-on' fluorescent probes for the direct detection of free radicals and nitric oxide in Pseudomonas aeruginosa biofilms.
    Barzegar Amiri Olia M; Zavras A; Schiesser CH; Alexander SA
    Org Biomol Chem; 2016 Feb; 14(7):2272-81. PubMed ID: 26795194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa.
    Strathmann M; Wingender J; Flemming HC
    J Microbiol Methods; 2002 Aug; 50(3):237-48. PubMed ID: 12031574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the visualization of fluorescently tagged nanoparticles and fluorophore-labeled molecular probes by treatment with CuSO(4) to quench autofluorescence in the rat inner ear.
    Zhang Y; Zhang W; Johnston AH; Newman TA; Pyykkö I; Zou J
    Hear Res; 2010 Oct; 269(1-2):1-11. PubMed ID: 20659540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.