BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22587931)

  • 41. Quantitative 3D comparison of biofilm imaged by X-ray micro-tomography and two-photon laser scanning microscopy.
    Larue AE; Swider P; Duru P; Daviaud D; Quintard M; Davit Y
    J Microsc; 2018 Sep; 271(3):302-314. PubMed ID: 29926921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The use of fluorescent staining techniques for microscopic investigation of polymorphonuclear leukocytes and bacteria.
    Alhede M; Stavnsbjerg C; Bjarnsholt T
    APMIS; 2018 Oct; 126(10):779-794. PubMed ID: 30191615
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy.
    Rani SA; Pitts B; Stewart PS
    Antimicrob Agents Chemother; 2005 Feb; 49(2):728-32. PubMed ID: 15673757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corneal Biofilms: From Planktonic to Microcolony Formation in an Experimental Keratitis Infection with Pseudomonas Aeruginosa.
    Saraswathi P; Beuerman RW
    Ocul Surf; 2015 Oct; 13(4):331-45. PubMed ID: 26220579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An in situ Raman spectroscopy-based microfluidic "lab-on-a-chip" platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms.
    Feng J; de la Fuente-Núñez C; Trimble MJ; Xu J; Hancock RE; Lu X
    Chem Commun (Camb); 2015 May; 51(43):8966-9. PubMed ID: 25929246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Formation of Pseudomonas aeruginosa inhibition zone during tobramycin disk diffusion is due to transition from planktonic to biofilm mode of growth.
    Høiby N; Henneberg KÅ; Wang H; Stavnsbjerg C; Bjarnsholt T; Ciofu O; Johansen UR; Sams T
    Int J Antimicrob Agents; 2019 May; 53(5):564-573. PubMed ID: 30615928
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa.
    Pamp SJ; Tolker-Nielsen T
    J Bacteriol; 2007 Mar; 189(6):2531-9. PubMed ID: 17220224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy.
    Masyuko RN; Lanni EJ; Driscoll CM; Shrout JD; Sweedler JV; Bohn PW
    Analyst; 2014 Nov; 139(22):5700-8. PubMed ID: 24883432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gentian violet and ferric ammonium citrate disrupt Pseudomonas aeruginosa biofilms.
    Wang EW; Agostini G; Olomu O; Runco D; Jung JY; Chole RA
    Laryngoscope; 2008 Nov; 118(11):2050-6. PubMed ID: 18849857
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crosstalk-free multicolor RICS using spectral weighting.
    Schrimpf W; Lemmens V; Smisdom N; Ameloot M; Lamb DC; Hendrix J
    Methods; 2018 May; 140-141():97-111. PubMed ID: 29408283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of starvation and biofilm formation on acid resistance of Streptococcus mutans.
    Zhu M; Takenaka S; Sato M; Hoshino E
    Oral Microbiol Immunol; 2001 Feb; 16(1):24-7. PubMed ID: 11169135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of beta 1-4 linked polymers in the biofilm structure of marine Pseudomonas sp. CE-2 on 304 stainless steel coupons.
    Jain A; Bhosle NB
    Biofouling; 2008; 24(4):283-90. PubMed ID: 18568666
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Confocal analysis of the exopolysaccharide matrix of Candida albicans biofilms.
    Gonçalves LM; Del Bel Cury AA; de Vasconcellos AA; Cury JA; da Silva WJ
    J Investig Clin Dent; 2015 Aug; 6(3):179-85. PubMed ID: 24610643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis.
    Pihl M; Davies JR; Chávez de Paz LE; Svensäter G
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):439-46. PubMed ID: 20528934
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow conditions.
    Schlafer S; Baelum V; Dige I
    J Microbiol Methods; 2018 Sep; 152():194-200. PubMed ID: 30144480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficacy of levofloxacin against biofilms of Pseudomonas aeruginosa isolated from patients with respiratory tract infections in vitro.
    She P; Luo Z; Chen L; Wu Y
    Microbiologyopen; 2019 May; 8(5):e00720. PubMed ID: 30183143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping the speciation of iron in Pseudomonas aeruginosa biofilms using scanning transmission X-ray microscopy.
    Hunter RC; Hitchcock AP; Dynes JJ; Obst M; Beveridge TJ
    Environ Sci Technol; 2008 Dec; 42(23):8766-72. PubMed ID: 19192795
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material.
    Vassena C; Fenu S; Giuliani F; Fantetti L; Roncucci G; Simonutti G; Romanò CL; De Francesco R; Drago L
    Int J Antimicrob Agents; 2014 Jul; 44(1):47-55. PubMed ID: 24933446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of
    Anju VT; Paramanantham P; Siddhardha B; Sruthil Lal SB; Sharan A; Alyousef AA; Arshad M; Syed A
    Int J Nanomedicine; 2019; 14():3861-3874. PubMed ID: 31213806
    [No Abstract]   [Full Text] [Related]  

  • 60. Imaging Pseudomonas aeruginosa Biofilm Extracellular Polymer Scaffolds with Amphiphilic Carbon Dots.
    Ritenberg M; Nandi S; Kolusheva S; Dandela R; Meijler MM; Jelinek R
    ACS Chem Biol; 2016 May; 11(5):1265-70. PubMed ID: 26882175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.