BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22587938)

  • 1. Linear normalised hash function for clustering gene sequences and identifying reference sequences from multiple sequence alignments.
    Helal M; Kong F; Chen SC; Zhou F; Dwyer DE; Potter J; Sintchenko V
    Microb Inform Exp; 2012 Jan; 2(1):2. PubMed ID: 22587938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.
    Helal M; Kong F; Chen SC; Bain M; Christen R; Sintchenko V
    PLoS One; 2011; 6(6):e19517. PubMed ID: 21687706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNACLUST: accurate and efficient clustering of phylogenetic marker genes.
    Ghodsi M; Liu B; Pop M
    BMC Bioinformatics; 2011 Jun; 12():271. PubMed ID: 21718538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering biological sequences with dynamic sequence similarity threshold.
    Chiu JKH; Ong RT
    BMC Bioinformatics; 2022 Mar; 23(1):108. PubMed ID: 35354426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SEED: efficient clustering of next-generation sequences.
    Bao E; Jiang T; Kaloshian I; Girke T
    Bioinformatics; 2011 Sep; 27(18):2502-9. PubMed ID: 21810899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpolative multidimensional scaling techniques for the identification of clusters in very large sequence sets.
    Hughes A; Ruan Y; Ekanayake S; Bae SH; Dong Q; Rho M; Qiu J; Fox G
    BMC Bioinformatics; 2012 Mar; 13 Suppl 2(Suppl 2):S9. PubMed ID: 22536872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting clusters of different geometrical shapes in microarray gene expression data.
    Kim DW; Lee KH; Lee D
    Bioinformatics; 2005 May; 21(9):1927-34. PubMed ID: 15647300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EasyCluster: a fast and efficient gene-oriented clustering tool for large-scale transcriptome data.
    Picardi E; Mignone F; Pesole G
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S10. PubMed ID: 19534735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering Highly Divergent Homologous Proteins: An Alignment-Free Method.
    Muñoz-Baena L; Poon AFY
    Curr Protoc; 2023 Feb; 3(2):e666. PubMed ID: 36809686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A scalable assembly-free variable selection algorithm for biomarker discovery from metagenomes.
    Gkanogiannis A; Gazut S; Salanoubat M; Kanj S; Brüls T
    BMC Bioinformatics; 2016 Aug; 17(1):311. PubMed ID: 27542753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-quality sequence clustering guided by network topology and multiple alignment likelihood.
    Miele V; Penel S; Daubin V; Picard F; Kahn D; Duret L
    Bioinformatics; 2012 Apr; 28(8):1078-85. PubMed ID: 22368255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved model for whole genome phylogenetic analysis by Fourier transform.
    Yin C; Yau SS
    J Theor Biol; 2015 Oct; 382():99-110. PubMed ID: 26151589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for predicting gene functions from genome and metagenome sequences on the basis of oligopeptide frequency distance.
    Abe T; Ikarashi R; Mizoguchi M; Otake M; Ikemura T
    Genes Genet Syst; 2020 Apr; 95(1):11-19. PubMed ID: 32161228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple kernel density clustering algorithm for incomplete datasets in bioinformatics.
    Liao L; Li K; Li K; Yang C; Tian Q
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):111. PubMed ID: 30463619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. acdc - Automated Contamination Detection and Confidence estimation for single-cell genome data.
    Lux M; Krüger J; Rinke C; Maus I; Schlüter A; Woyke T; Sczyrba A; Hammer B
    BMC Bioinformatics; 2016 Dec; 17(1):543. PubMed ID: 27998267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the composition of species in metagenomes by clustering of next-generation read sequences.
    Seok HS; Hong W; Kim J
    Methods; 2014 Oct; 69(3):213-9. PubMed ID: 25072168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering analysis of proteins from microbial genomes at multiple levels of resolution.
    Zaslavsky L; Ciufo S; Fedorov B; Tatusova T
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):276. PubMed ID: 27586436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy.
    Gao X; Lin H; Revanna K; Dong Q
    BMC Bioinformatics; 2017 May; 18(1):247. PubMed ID: 28486927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering.
    Yooseph S; Li W; Sutton G
    BMC Bioinformatics; 2008 Apr; 9():182. PubMed ID: 18402669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeLUCS: Deep learning for unsupervised clustering of DNA sequences.
    Millán Arias P; Alipour F; Hill KA; Kari L
    PLoS One; 2022; 17(1):e0261531. PubMed ID: 35061715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.