These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS. Rodgers-Melnick E; Culp M; DiFazio SP BMC Genomics; 2013 Sep; 14():608. PubMed ID: 24015873 [TBL] [Abstract][Full Text] [Related]
8. Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: application to Mycobacterium tuberculosis. Mahajan G; Mande SC BMC Bioinformatics; 2017 Apr; 18(1):201. PubMed ID: 28376709 [TBL] [Abstract][Full Text] [Related]
9. Improving the Detection of Protein Complexes by Predicting Novel Missing Interactome Links in the Protein-Protein Interaction Network. Zaki N; Alashwal H Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5041-5044. PubMed ID: 30441473 [TBL] [Abstract][Full Text] [Related]
10. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
11. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related]
12. Gene function finding through cross-organism ensemble learning. Moro G; Masseroli M BioData Min; 2021 Feb; 14(1):14. PubMed ID: 33579334 [TBL] [Abstract][Full Text] [Related]
13. Cross-organism learning method to discover new gene functionalities. Domeniconi G; Masseroli M; Moro G; Pinoli P Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853 [TBL] [Abstract][Full Text] [Related]
14. Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis. Mei S; Flemington EK; Zhang K BMC Genomics; 2018 Jun; 19(1):505. PubMed ID: 29954330 [TBL] [Abstract][Full Text] [Related]
15. Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service. Kim JG; Park D; Kim BC; Cho SW; Kim YT; Park YJ; Cho HJ; Park H; Kim KB; Yoon KO; Park SJ; Lee BM; Bhak J BMC Bioinformatics; 2008 Jan; 9():41. PubMed ID: 18215330 [TBL] [Abstract][Full Text] [Related]
16. Network-based features enable prediction of essential genes across diverse organisms. Azhagesan K; Ravindran B; Raman K PLoS One; 2018; 13(12):e0208722. PubMed ID: 30543651 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide inference of the Camponotus floridanus protein-protein interaction network using homologous mapping and interacting domain profile pairs. Gupta SK; Srivastava M; Osmanoglu Ö; Dandekar T Sci Rep; 2020 Feb; 10(1):2334. PubMed ID: 32047225 [TBL] [Abstract][Full Text] [Related]
18. 3D-interologs: an evolution database of physical protein- protein interactions across multiple genomes. Lo YS; Chen YC; Yang JM BMC Genomics; 2010 Dec; 11 Suppl 3(Suppl 3):S7. PubMed ID: 21143789 [TBL] [Abstract][Full Text] [Related]
19. Prediction of evolutionarily conserved interologs in Mus musculus. Yellaboina S; Dudekula DB; Ko MSh BMC Genomics; 2008 Oct; 9():465. PubMed ID: 18842131 [TBL] [Abstract][Full Text] [Related]