These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 22588072)
1. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Lopez-Heredia MA; Sa Y; Salmon P; de Wijn JR; Wolke JG; Jansen JA Acta Biomater; 2012 Aug; 8(8):3120-7. PubMed ID: 22588072 [TBL] [Abstract][Full Text] [Related]
2. Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles. Sa Y; Yang F; Leeuwenburgh SC; Wolke JG; Ye G; de Wijn JR; Jansen JA; Wang Y J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):548-55. PubMed ID: 24953849 [TBL] [Abstract][Full Text] [Related]
3. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications. Lopez-Heredia MA; Pattipeilohy J; Hsu S; Grykien M; van der Weijden B; Leeuwenburgh SC; Salmon P; Wolke JG; Jansen JA J Biomed Mater Res A; 2013 Feb; 101(2):478-90. PubMed ID: 22927324 [TBL] [Abstract][Full Text] [Related]
4. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
5. Effect of surface modification on the in vitro calcium phosphate growth on the surface of poly(methyl methacrylate) and bioactivity. Choi SM; Yang WK; Yoo YW; Lee WK Colloids Surf B Biointerfaces; 2010 Mar; 76(1):326-33. PubMed ID: 20022226 [TBL] [Abstract][Full Text] [Related]
6. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS Spine J; 2008; 8(3):482-7. PubMed ID: 18455113 [TBL] [Abstract][Full Text] [Related]
7. Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder. Fukuda C; Goto K; Imamura M; Neo M; Nakamura T Acta Biomater; 2011 Oct; 7(10):3595-600. PubMed ID: 21704200 [TBL] [Abstract][Full Text] [Related]
8. Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement. Lopez-Heredia MA; Sariibrahimoglu K; Yang W; Bohner M; Yamashita D; Kunstar A; van Apeldoorn AA; Bronkhorst EM; Félix Lanao RP; Leeuwenburgh SC; Itatani K; Yang F; Salmon P; Wolke JG; Jansen JA Acta Biomater; 2012 Jan; 8(1):404-14. PubMed ID: 21884833 [TBL] [Abstract][Full Text] [Related]
9. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity. Dagang G; Kewei X; Haoliang S; Yong H J Biomed Mater Res A; 2006 May; 77(2):313-23. PubMed ID: 16402384 [TBL] [Abstract][Full Text] [Related]
10. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
11. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability. Gomes FO; Pires RA; Reis RL Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1361-70. PubMed ID: 23827583 [TBL] [Abstract][Full Text] [Related]
12. The osteogenic properties of CaP/silk composite scaffolds. Zhang Y; Wu C; Friis T; Xiao Y Biomaterials; 2010 Apr; 31(10):2848-56. PubMed ID: 20071025 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. Sa Y; Yang F; de Wijn JR; Wang Y; Wolke JG; Jansen JA Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():190-8. PubMed ID: 26838840 [TBL] [Abstract][Full Text] [Related]
14. Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Lye KW; Tideman H; Wolke JC; Merkx MA; Chin FK; Jansen JA Clin Oral Implants Res; 2013 Aug; 24 Suppl A100():100-9. PubMed ID: 22150934 [TBL] [Abstract][Full Text] [Related]
15. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
16. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Ooms EM; Wolke JG; van de Heuvel MT; Jeschke B; Jansen JA Biomaterials; 2003 Mar; 24(6):989-1000. PubMed ID: 12504521 [TBL] [Abstract][Full Text] [Related]
17. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194 [TBL] [Abstract][Full Text] [Related]
19. Effect of adding sodium hexametaphosphate liquefier on basic properties of calcium phosphate cements. Hesaraki S; Zamanian A; Moztarzadeh F J Biomed Mater Res A; 2009 Feb; 88(2):314-21. PubMed ID: 18286603 [TBL] [Abstract][Full Text] [Related]
20. Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Barros AA; Alves A; Nunes C; Coimbra MA; Pires RA; Reis RL Acta Biomater; 2013 Nov; 9(11):9086-97. PubMed ID: 23816652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]