These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 22588144)
1. Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Mackin D; Peterson S; Beddar S; Polf J Phys Med Biol; 2012 Jun; 57(11):3537-53. PubMed ID: 22588144 [TBL] [Abstract][Full Text] [Related]
2. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Polf JC; Avery S; Mackin DS; Beddar S Phys Med Biol; 2015 Sep; 60(18):7085-99. PubMed ID: 26317610 [TBL] [Abstract][Full Text] [Related]
3. Comparison of reconstructed prompt gamma emissions using maximum likelihood estimation and origin ensemble algorithms for a Compton camera system tailored to proton range monitoring. Valencia Lozano I; Dedes G; Peterson S; Mackin D; Zoglauer A; Beddar S; Avery S; Polf J; Parodi K Z Med Phys; 2023 May; 33(2):124-134. PubMed ID: 35750591 [TBL] [Abstract][Full Text] [Related]
4. Use of a LYSO-based Compton camera for prompt gamma range verification in proton therapy. Jan ML; Hsiao IT; Huang HM Med Phys; 2017 Dec; 44(12):6261-6269. PubMed ID: 29031024 [TBL] [Abstract][Full Text] [Related]
5. A low-count reconstruction algorithm for Compton-based prompt gamma imaging. Huang HM; Liu CC; Jan ML; Lee MW Phys Med Biol; 2018 Apr; 63(8):085013. PubMed ID: 29546850 [TBL] [Abstract][Full Text] [Related]
6. Compton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapy. Yao Z; Xiao Y; Chen Z; Wang B; Hou Q Sci Rep; 2019 Feb; 9(1):1133. PubMed ID: 30718671 [TBL] [Abstract][Full Text] [Related]
7. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Peterson SW; Robertson D; Polf J Phys Med Biol; 2010 Nov; 55(22):6841-56. PubMed ID: 21048295 [TBL] [Abstract][Full Text] [Related]
8. 3D prompt gamma imaging for proton beam range verification. Draeger E; Mackin D; Peterson S; Chen H; Avery S; Beddar S; Polf JC Phys Med Biol; 2018 Jan; 63(3):035019. PubMed ID: 29380750 [TBL] [Abstract][Full Text] [Related]
9. PSF reconstruction for Compton-based prompt gamma imaging. Jan ML; Lee MW; Huang HM Phys Med Biol; 2018 Jan; 63(3):035015. PubMed ID: 29189207 [TBL] [Abstract][Full Text] [Related]
10. Noise evaluation of Compton camera imaging for proton therapy. Ortega PG; Torres-Espallardo I; Cerutti F; Ferrari A; Gillam JE; Lacasta C; Llosá G; Oliver JF; Sala PR; Solevi P; Rafecas M Phys Med Biol; 2015 Mar; 60(5):1845-63. PubMed ID: 25658644 [TBL] [Abstract][Full Text] [Related]
11. A feasibility study of enhanced prompt gamma imaging for range verification in proton therapy using deep learning. Jiang Z; Polf JC; Barajas CA; Gobbert MK; Ren L Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36848674 [No Abstract] [Full Text] [Related]
12. Fast image reconstruction for Compton camera using stochastic origin ensemble approach. Andreyev A; Sitek A; Celler A Med Phys; 2011 Jan; 38(1):429-38. PubMed ID: 21361211 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based event recognition in SiFi Compton camera imaging for proton therapy monitoring. Kazemi Kozani M; Magiera A Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35594850 [No Abstract] [Full Text] [Related]
14. Monte Carlo evaluation of a LYSO-based Compton camera using two origin ensemble algorithms with resolution recovery. Huang HM Med Phys; 2021 Sep; 48(9):5300-5310. PubMed ID: 34260083 [TBL] [Abstract][Full Text] [Related]
15. Machine learning approach for proton range verification using real-time prompt gamma imaging with Compton cameras: addressing the total deposited energy information gap. Kazemi Kozani M Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38417182 [No Abstract] [Full Text] [Related]
16. Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation. Hilaire E; Sarrut D; Peyrin F; Maxim V Phys Med Biol; 2016 Apr; 61(8):3127-46. PubMed ID: 27008459 [TBL] [Abstract][Full Text] [Related]
17. SU-E-J-79: Using the Distance of Closest Approach to Improve Compton Camera Image Quality. Mackin D; Peterson S; Polf J; Beddar S Med Phys; 2012 Jun; 39(6Part7):3670. PubMed ID: 28519827 [TBL] [Abstract][Full Text] [Related]
18. Influence of sub-nanosecond time of flight resolution for online range verification in proton therapy using the line-cone reconstruction in Compton imaging. Livingstone J; Dauvergne D; Etxebeste A; Fontana M; Gallin-Martel ML; Huisman B; Létang JM; Marcatili S; Sarrut D; Testa É Phys Med Biol; 2021 Jun; 66(12):. PubMed ID: 34020434 [TBL] [Abstract][Full Text] [Related]
19. Influence of the background in Compton camera images for proton therapy treatment monitoring. Borja-Lloret M; Barrientos L; Bernabéu J; Lacasta C; Muñoz E; Ros A; Roser J; Viegas R; Llosá G Phys Med Biol; 2023 Jul; 68(14):. PubMed ID: 37339665 [No Abstract] [Full Text] [Related]
20. Material efficiency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy. Robertson D; Polf JC; Peterson SW; Gillin MT; Beddar S Phys Med Biol; 2011 May; 56(10):3047-59. PubMed ID: 21508442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]