These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22588214)

  • 1. Interpreting variability in population biomonitoring data: role of elimination kinetics.
    Aylward LL; Kirman CR; Adgate JL; McKenzie LM; Hays SM
    J Expo Sci Environ Epidemiol; 2012 Jul; 22(4):398-408. PubMed ID: 22588214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sources of variability in biomarker concentrations.
    Aylward LL; Hays SM; Smolders R; Koch HM; Cocker J; Jones K; Warren N; Levy L; Bevan R
    J Toxicol Environ Health B Crit Rev; 2014; 17(1):45-61. PubMed ID: 24597909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 1: metals.
    Smolders R; Koch HM; Moos RK; Cocker J; Jones K; Warren N; Levy L; Bevan R; Hays SM; Aylward LL
    Toxicol Lett; 2014 Dec; 231(2):249-60. PubMed ID: 25128590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in urinary spot sample, 24 h samples, and longer-term average urinary concentrations of short-lived environmental chemicals: implications for exposure assessment and reverse dosimetry.
    Aylward LL; Hays SM; Zidek A
    J Expo Sci Environ Epidemiol; 2017 Nov; 27(6):582-590. PubMed ID: 27703149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of PK- and PBPK-based modeling tools for derivation of biomonitoring guidance values.
    Bartels M; Rick D; Lowe E; Loizou G; Price P; Spendiff M; Arnold S; Cocker J; Ball N
    Comput Methods Programs Biomed; 2012 Nov; 108(2):773-88. PubMed ID: 22704290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative interpretation of human biomonitoring data.
    Clewell HJ; Tan YM; Campbell JL; Andersen ME
    Toxicol Appl Pharmacol; 2008 Aug; 231(1):122-33. PubMed ID: 18589468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomonitoring equivalents: a screening approach for interpreting biomonitoring results from a public health risk perspective.
    Hays SM; Becker RA; Leung HW; Aylward LL; Pyatt DW
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):96-109. PubMed ID: 17030369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomonitoring framework to support exposure and risk assessments.
    Sobus JR; Tan YM; Pleil JD; Sheldon LS
    Sci Total Environ; 2011 Oct; 409(22):4875-84. PubMed ID: 21906784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental chemicals in people: challenges in interpreting biomonitoring information.
    LaKind JS; Barraj L; Tran N; Aylward LL
    J Environ Health; 2008 May; 70(9):61-4. PubMed ID: 18517157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating lifetime risk from spot biomarker data and intraclass correlation coefficients (ICC).
    Pleil JD; Sobus JR
    J Toxicol Environ Health A; 2013; 76(12):747-66. PubMed ID: 23980840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomonitoring Equivalents for benzene.
    Hays SM; Pyatt DW; Kirman CR; Aylward LL
    Regul Toxicol Pharmacol; 2012 Feb; 62(1):62-73. PubMed ID: 22178585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomonitoring Equivalents for interpretation of urinary fluoride.
    Aylward LL; Hays SM; Vezina A; Deveau M; St-Amand A; Nong A
    Regul Toxicol Pharmacol; 2015 Jun; 72(1):158-67. PubMed ID: 25863192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Biomonitoring Equivalents to interpret human biomonitoring data in a public health risk context.
    Hays SM; Aylward LL
    J Appl Toxicol; 2009 May; 29(4):275-88. PubMed ID: 19115313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomonitoring for environmental exposures to arsenic.
    Orloff K; Mistry K; Metcalf S
    J Toxicol Environ Health B Crit Rev; 2009 Aug; 12(7):509-24. PubMed ID: 20183531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrations versus amounts of biomarkers in urine: a comparison of approaches to assess pyrethroid exposure.
    Fortin MC; Carrier G; Bouchard M
    Environ Health; 2008 Nov; 7():55. PubMed ID: 18983658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.