These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 22588462)
1. Physiologically based biokinetic (PBBK) modeling of safrole bioactivation and detoxification in humans as compared with rats. Martati E; Boersma MG; Spenkelink A; Khadka DB; van Bladeren PJ; Rietjens IM; Punt A Toxicol Sci; 2012 Aug; 128(2):301-16. PubMed ID: 22588462 [TBL] [Abstract][Full Text] [Related]
2. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats. Martati E; Boersma MG; Spenkelink A; Khadka DB; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Chem Res Toxicol; 2011 Jun; 24(6):818-34. PubMed ID: 21446753 [TBL] [Abstract][Full Text] [Related]
3. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat. Punt A; Freidig AP; Delatour T; Scholz G; Boersma MG; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2008 Sep; 231(2):248-59. PubMed ID: 18539307 [TBL] [Abstract][Full Text] [Related]
4. Physiologically based biokinetic model of bioactivation and detoxification of the alkenylbenzene methyleugenol in rat. Al-Subeihi AA; Spenkelink B; Rachmawati N; Boersma MG; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Toxicol In Vitro; 2011 Feb; 25(1):267-85. PubMed ID: 20828604 [TBL] [Abstract][Full Text] [Related]
5. Malabaricone C-containing mace extract inhibits safrole bioactivation and DNA adduct formation both in vitro and in vivo. Martati E; Boonpawa R; van den Berg JH; Paini A; Spenkelink A; Punt A; Vervoort J; van Bladeren PJ; Rietjens IM Food Chem Toxicol; 2014 Apr; 66():373-84. PubMed ID: 24508526 [TBL] [Abstract][Full Text] [Related]
6. Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Miller EC; Swanson AB; Phillips DH; Fletcher TL; Liem A; Miller JA Cancer Res; 1983 Mar; 43(3):1124-34. PubMed ID: 6825084 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the biliary and urinary glutathione and N-acetylcysteine metabolites of the hepatic carcinogen 1'-hydroxysafrole and its 1'-oxo metabolite in rats and mice. Fennell TR; Miller JA; Miller EC Cancer Res; 1984 Aug; 44(8):3231-40. PubMed ID: 6744260 [TBL] [Abstract][Full Text] [Related]
8. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes. Paini A; Punt A; Viton F; Scholz G; Delatour T; Marin-Kuan M; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 May; 245(1):57-66. PubMed ID: 20144636 [TBL] [Abstract][Full Text] [Related]
9. Physiologically based kinetic models for the alkenylbenzene elemicin in rat and human and possible implications for risk assessment. van den Berg SJ; Punt A; Soffers AE; Vervoort J; Ngeleja S; Spenkelink B; Rietjens IM Chem Res Toxicol; 2012 Nov; 25(11):2352-67. PubMed ID: 22992039 [TBL] [Abstract][Full Text] [Related]
10. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes. Jeurissen SM; Punt A; Boersma MG; Bogaards JJ; Fiamegos YC; Schilter B; van Bladeren PJ; Cnubben NH; Rietjens IM Chem Res Toxicol; 2007 May; 20(5):798-806. PubMed ID: 17407329 [TBL] [Abstract][Full Text] [Related]
11. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats. Punt A; Paini A; Boersma MG; Freidig AP; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Sci; 2009 Aug; 110(2):255-69. PubMed ID: 19447879 [TBL] [Abstract][Full Text] [Related]
12. Physiologically based kinetic modeling of the bioactivation of myristicin. Al-Malahmeh AJ; Al-Ajlouni A; Wesseling S; Soffers AE; Al-Subeihi A; Kiwamoto R; Vervoort J; Rietjens IM Arch Toxicol; 2017 Feb; 91(2):713-734. PubMed ID: 27334372 [TBL] [Abstract][Full Text] [Related]
13. Matrix modulation of the bioactivation of estragole by constituents of different alkenylbenzene-containing herbs and spices and physiologically based biokinetic modeling of possible in vivo effects. Alhusainy W; van den Berg SJ; Paini A; Campana A; Asselman M; Spenkelink A; Punt A; Scholz G; Schilter B; Adams TB; van Bladeren PJ; Rietjens IM Toxicol Sci; 2012 Sep; 129(1):174-87. PubMed ID: 22649189 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in silico study on consequences of combined exposure to the food-borne alkenylbenzenes estragole and safrole. Yang S; Kawai T; Wesseling S; Rietjens IMCM Toxicol In Vitro; 2022 Mar; 79():105290. PubMed ID: 34861381 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of human interindividual variation in bioactivation of estragole using physiologically based biokinetic modeling. Punt A; Jeurissen SM; Boersma MG; Delatour T; Scholz G; Schilter B; van Bladeren PJ; Rietjens IM Toxicol Sci; 2010 Feb; 113(2):337-48. PubMed ID: 19920071 [TBL] [Abstract][Full Text] [Related]
16. In silico methods for physiologically based biokinetic models describing bioactivation and detoxification of coumarin and estragole: implications for risk assessment. Rietjens IM; Punt A; Schilter B; Scholz G; Delatour T; van Bladeren PJ Mol Nutr Food Res; 2010 Feb; 54(2):195-207. PubMed ID: 19943261 [TBL] [Abstract][Full Text] [Related]
17. Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect. Alhusainy W; Paini A; Punt A; Louisse J; Spenkelink A; Vervoort J; Delatour T; Scholz G; Schilter B; Adams T; van Bladeren PJ; Rietjens IM Toxicol Appl Pharmacol; 2010 Jun; 245(2):179-90. PubMed ID: 20226806 [TBL] [Abstract][Full Text] [Related]
18. Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1'-sulfoöxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1'-hydroxysafrole in mouse liver. Boberg EW; Miller EC; Miller JA; Poland A; Liem A Cancer Res; 1983 Nov; 43(11):5163-73. PubMed ID: 6577945 [TBL] [Abstract][Full Text] [Related]
19. In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin. Alhusainy W; Paini A; van den Berg JH; Punt A; Scholz G; Schilter B; van Bladeren PJ; Taylor S; Adams TB; Rietjens IM Mol Nutr Food Res; 2013 Nov; 57(11):1969-78. PubMed ID: 23894034 [TBL] [Abstract][Full Text] [Related]
20. The metabolic activation of the carcinogen 1'-hydroxysafrole in vivo and in vitro and the electrophilic reactivities of possible ultimate carcinogens. Wislocki PG; Borchert P; Miller JA; Miller EC Cancer Res; 1976 May; 36(5):1686-95. PubMed ID: 5188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]