BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22588495)

  • 1. Effects of methylphenidate on basic and higher-order oculomotor functions.
    Allman AA; Ettinger U; Joober R; O'Driscoll GA
    J Psychopharmacol; 2012 Nov; 26(11):1471-9. PubMed ID: 22588495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of visual attention on postural control in children with attention-deficit/hyperactivity disorder.
    Bucci MP; Seassau M; Larger S; Bui-Quoc E; Gerard CL
    Res Dev Disabil; 2014 Jun; 35(6):1292-300. PubMed ID: 24691355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caffeine increases the velocity of rapid eye movements in unfatigued humans.
    Connell CJW; Thompson B; Turuwhenua J; Hess RF; Gant N
    Psychopharmacology (Berl); 2017 Aug; 234(15):2311-2323. PubMed ID: 28536868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of procyclidine on eye movements in schizophrenia.
    Ettinger U; Kumari V; Zachariah E; Galea A; Crawford TJ; Corr PJ; Taylor D; Das M; Sharma T
    Neuropsychopharmacology; 2003 Dec; 28(12):2199-208. PubMed ID: 12942142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oculomotor control in children who were born very prematurely.
    Newsham D; Knox PC; Cooke RW
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2595-601. PubMed ID: 17525189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral methylphenidate challenge selectively decreases putaminal T2 in healthy subjects.
    Silveri MM; Anderson CM; McNeil JF; Diaz CI; Lukas SE; Mendelson JH; Renshaw PF; Kaufman MJ
    Drug Alcohol Depend; 2004 Nov; 76(2):173-80. PubMed ID: 15488341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylphenidate effects on neural activity during response inhibition in healthy humans.
    Costa A; Riedel M; Pogarell O; Menzel-Zelnitschek F; Schwarz M; Reiser M; Möller HJ; Rubia K; Meindl T; Ettinger U
    Cereb Cortex; 2013 May; 23(5):1179-89. PubMed ID: 22581848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared variance of oculomotor phenotypes in a large sample of healthy young men.
    Valakos D; Karantinos T; Evdokimidis I; Stefanis NC; Avramopoulos D; Smyrnis N
    Exp Brain Res; 2018 Aug; 236(8):2399-2410. PubMed ID: 29947959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative pharmacodynamics and plasma concentrations of d-threo-methylphenidate hydrochloride after single doses of d-threo-methylphenidate hydrochloride and d,l-threo-methylphenidate hydrochloride in a double-blind, placebo-controlled, crossover laboratory school study in children with attention-deficit/hyperactivity disorder.
    Quinn D; Wigal S; Swanson J; Hirsch S; Ottolini Y; Dariani M; Roffman M; Zeldis J; Cooper T
    J Am Acad Child Adolesc Psychiatry; 2004 Nov; 43(11):1422-9. PubMed ID: 15502602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term effects of cannabis on oculomotor function in humans.
    Huestegge L; Radach R; Kunert HJ
    J Psychopharmacol; 2009 Aug; 23(6):714-22. PubMed ID: 18562415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 24-hour and 36-hour sleep deprivation on smooth pursuit and saccadic eye movements.
    Fransson PA; Patel M; Magnusson M; Berg S; Almbladh P; Gomez S
    J Vestib Res; 2008; 18(4):209-22. PubMed ID: 19208965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nicotine on smooth pursuit eye movements in healthy non-smokers.
    Meyhöfer I; Kasparbauer AM; Steffens M; Ettinger U
    Psychopharmacology (Berl); 2019 Jul; 236(7):2259-2271. PubMed ID: 30874860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral response to methylphenidate challenge: influence of early life parental care.
    Engert V; Joober R; Meaney MJ; Hellhammer DH; Pruessner JC
    Dev Psychobiol; 2009 Jul; 51(5):408-16. PubMed ID: 19492313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lithium on saccadic eye movements in healthy subjects in a ten-day double-blind placebo-controlled cross-over pilot study.
    Amado I; Galinowski A; Daban C; Ramdane-Cherif Z; Poirier E; Bourdel MC; Poirier MF; Krebs MO
    Pharmacopsychiatry; 2005 Nov; 38(6):321-5. PubMed ID: 16342005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Executive functions and methylphenidate response in subtypes of attention-deficit/hyperactivity disorder.
    O'Driscoll GA; Dépatie L; Holahan AL; Savion-Lemieux T; Barr RG; Jolicoeur C; Douglas VI
    Biol Psychiatry; 2005 Jun; 57(11):1452-60. PubMed ID: 15950020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys.
    Basso MA; Pokorny JJ; Liu P
    Eur J Neurosci; 2005 Jul; 22(2):448-64. PubMed ID: 16045498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural effects of methylphenidate and nicotine during smooth pursuit eye movements.
    Kasparbauer AM; Meyhöfer I; Steffens M; Weber B; Aydin M; Kumari V; Hurlemann R; Ettinger U
    Neuroimage; 2016 Nov; 141():52-59. PubMed ID: 27402599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylphenidate enhances both intracortical inhibition and facilitation in healthy adults.
    Kirschner J; Moll GH; Fietzek UM; Heinrich H; Mall V; Berweck S; Heinen F; Rothenberger A
    Pharmacopsychiatry; 2003; 36(2):79-82. PubMed ID: 12734766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth pursuit performance during target blanking does not influence the triggering of predictive saccades.
    Orban de Xivry JJ; Missal M; Lefèvre P
    J Vis; 2009 Oct; 9(11):7.1-16. PubMed ID: 20053070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence from increased anticipation of predictive saccades for a dysfunction of fronto-striatal circuits in obsessive-compulsive disorder.
    Spengler D; Trillenberg P; Sprenger A; Nagel M; Kordon A; Junghanns K; Heide W; Arolt V; Hohagen F; Lencer R
    Psychiatry Res; 2006 Jun; 143(1):77-88. PubMed ID: 16730377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.