These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 22588775)
1. Programmable genetic switches to control transcriptional machinery of pluripotency. Pandian GN; Sugiyama H Biotechnol J; 2012 Jun; 7(6):798-809. PubMed ID: 22588775 [TBL] [Abstract][Full Text] [Related]
2. Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts. Pandian GN; Sato S; Anandhakumar C; Taniguchi J; Takashima K; Syed J; Han L; Saha A; Bando T; Nagase H; Sugiyama H ACS Chem Biol; 2014 Dec; 9(12):2729-36. PubMed ID: 25366962 [TBL] [Abstract][Full Text] [Related]
3. The epigenome in pluripotency and differentiation. Thiagarajan RD; Morey R; Laurent LC Epigenomics; 2014 Feb; 6(1):121-37. PubMed ID: 24579950 [TBL] [Abstract][Full Text] [Related]
4. Tackling the epigenome in the pluripotent stem cells. Zhao X; Ruan Y; Wei CL J Genet Genomics; 2008 Jul; 35(7):403-12. PubMed ID: 18640620 [TBL] [Abstract][Full Text] [Related]
5. Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Pandian GN; Ohtsuki A; Bando T; Sato S; Hashiya K; Sugiyama H Bioorg Med Chem; 2012 Apr; 20(8):2656-60. PubMed ID: 22405921 [TBL] [Abstract][Full Text] [Related]
7. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. Pasque V; Radzisheuskaya A; Gillich A; Halley-Stott RP; Panamarova M; Zernicka-Goetz M; Surani MA; Silva JC J Cell Sci; 2012 Dec; 125(Pt 24):6094-104. PubMed ID: 23077180 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional control of embryonic and induced pluripotent stem cells. Guenther MG Epigenomics; 2011 Jun; 3(3):323-43. PubMed ID: 22122341 [TBL] [Abstract][Full Text] [Related]
9. Choreographing pluripotency and cell fate with transcription factors. Gonzales KA; Ng HH Biochim Biophys Acta; 2011 Jul; 1809(7):337-49. PubMed ID: 21722763 [TBL] [Abstract][Full Text] [Related]
10. Large chromatin domains in pluripotent and differentiated cells. Hu S; Cheng L; Wen B Acta Biochim Biophys Sin (Shanghai); 2012 Jan; 44(1):48-53. PubMed ID: 22194013 [TBL] [Abstract][Full Text] [Related]
11. Deconstructing the pluripotency gene regulatory network. Li M; Izpisua Belmonte JC Nat Cell Biol; 2018 Apr; 20(4):382-392. PubMed ID: 29593328 [TBL] [Abstract][Full Text] [Related]
12. Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Bilic J; Izpisua Belmonte JC Stem Cells; 2012 Jan; 30(1):33-41. PubMed ID: 22213481 [TBL] [Abstract][Full Text] [Related]
13. Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Wong CJ; Casper RF; Rogers IM Exp Cell Res; 2010 Apr; 316(6):927-39. PubMed ID: 20096686 [TBL] [Abstract][Full Text] [Related]
14. Chromatin regulation and dynamics in stem cells. Klein DC; Hainer SJ Curr Top Dev Biol; 2020; 138():1-71. PubMed ID: 32220294 [TBL] [Abstract][Full Text] [Related]
15. Molecular control of pluripotency. Boyer LA; Mathur D; Jaenisch R Curr Opin Genet Dev; 2006 Oct; 16(5):455-62. PubMed ID: 16920351 [TBL] [Abstract][Full Text] [Related]
16. Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Santourlidis S; Wernet P; Ghanjati F; Graffmann N; Springer J; Kriegs C; Zhao X; Brands J; Araúzo-Bravo MJ; Neves R; Koegler G; Uhrberg M Stem Cell Res; 2011 Jan; 6(1):60-9. PubMed ID: 20933485 [TBL] [Abstract][Full Text] [Related]