These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 22588805)

  • 1. A novel control architecture for physiological tremor compensation in teleoperated systems.
    Ghorbanian A; Zareinejad M; Rezaei SM; Sheikhzadeh H; Baghestan K
    Int J Med Robot; 2013 Sep; 9(3):280-97. PubMed ID: 22588805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation.
    Ghorbanian A; Rezaei SM; Khoogar AR; Zareinejad M; Baghestan K
    ISA Trans; 2013 Mar; 52(2):268-77. PubMed ID: 23146205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications.
    Veluvolu KC; Ang WT
    Int J Med Robot; 2010 Sep; 6(3):334-42. PubMed ID: 20623480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilateral control of master-slave manipulators with constant time delay.
    Forouzantabar A; Talebi HA; Sedigh AK
    ISA Trans; 2012 Jan; 51(1):74-80. PubMed ID: 21862007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistep prediction of physiological tremor for surgical robotics applications.
    Veluvolu KC; Tatinati S; Hong SM; Ang WT
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3074-82. PubMed ID: 23771303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs.
    Zakerimanesh A; Hashemzadeh F; Ghiasi AR
    ISA Trans; 2017 May; 68():33-47. PubMed ID: 28267986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1512-28. PubMed ID: 18179070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tremor Estimation and Removal in Robot-Assisted Surgery Using Improved Enhanced Band-Limited Multiple Fourier Linear Combiner.
    Wang W; Jia B; Ma J; Wang X; Song H
    Int J Med Robot; 2024 Aug; 20(4):e2666. PubMed ID: 39092625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties.
    Li Z; Su CY
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1400-13. PubMed ID: 24808577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The concept and feasibility of EXPERT: intelligent armrest using robotics technology.
    Goto T; Hongo K; Yako T; Hara Y; Okamoto J; Toyoda K; Fujie MG; Iseki H
    Neurosurgery; 2013 Jan; 72 Suppl 1():39-42. PubMed ID: 23254811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a piezo-actuated micro-teleoperation system for cell manipulation.
    Zareinejad M; Rezaei SM; Abdullah A; Shiry Ghidary S
    Int J Med Robot; 2009 Mar; 5(1):66-76. PubMed ID: 19177336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Master-slave robotic platform and its feasibility study for micro-neurosurgery.
    Mitsuishi M; Morita A; Sugita N; Sora S; Mochizuki R; Tanimoto K; Baek YM; Takahashi H; Harada K
    Int J Med Robot; 2013 Jun; 9(2):180-9. PubMed ID: 22588785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part II. Telesurgery evaluation.
    Park JW; Lee DH; Kim YW; Lee BH; Jo YH
    Minim Invasive Ther Allied Technol; 2012 May; 21(3):195-200. PubMed ID: 21815881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive neural network based position tracking control for Dual-master/Single-slave teleoperation system under communication constant time delays.
    Ji Y; Liu D; Guo Y
    ISA Trans; 2019 Oct; 93():80-92. PubMed ID: 30910311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.
    Rebelo J; Schiele A
    IEEE Trans Haptics; 2015; 8(1):79-89. PubMed ID: 25343769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.