These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22589067)

  • 1. Comparison between empirical protein force fields for the simulation of the adsorption behavior of structured LK peptides on functionalized surfaces.
    Collier G; Vellore NA; Yancey JA; Stuart SJ; Latour RA
    Biointerphases; 2012 Dec; 7(1-4):24. PubMed ID: 22589067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP; Agashe MA; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(4):1629-39. PubMed ID: 15697318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the transferability of a protein force field for the simulation of peptide-surface interactions.
    Vellore NA; Yancey JA; Collier G; Latour RA; Stuart SJ
    Langmuir; 2010 May; 26(10):7396-404. PubMed ID: 20222735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of multiphase systems utilizing independent force fields to control intraphase and interphase behavior.
    Biswas PK; Vellore NA; Yancey JA; Kucukkal TG; Collier G; Brooks BR; Stuart SJ; Latour RA
    J Comput Chem; 2012 Jun; 33(16):1458-66. PubMed ID: 22488548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the Conformational Ensemble of Alzheimer's Aβ10-40 Peptide Force Field Dependent?
    Siwy CM; Lockhart C; Klimov DK
    PLoS Comput Biol; 2017 Jan; 13(1):e1005314. PubMed ID: 28085875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and simulation of protein-surface interactions: achievements and challenges.
    Ozboyaci M; Kokh DB; Corni S; Wade RC
    Q Rev Biophys; 2016; 49():e4. PubMed ID: 26821792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide Bond Isomerization in High-Temperature Simulations.
    Neale C; Pomès R; García AE
    J Chem Theory Comput; 2016 Apr; 12(4):1989-99. PubMed ID: 26866899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous membrane-translocating peptide adsorption at silica surfaces: a molecular dynamics study.
    Kubiak-Ossowska K; Burley G; Patwardhan SV; Mulheran PA
    J Phys Chem B; 2013 Nov; 117(47):14666-75. PubMed ID: 24176015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modern protein force fields behave comparably in molecular dynamics simulations.
    Price DJ; Brooks CL
    J Comput Chem; 2002 Aug; 23(11):1045-57. PubMed ID: 12116391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution Structures of the Amyloid-β 1-42 Dimers from the Comparison of Four Atomistic Force Fields.
    Man VH; Nguyen PH; Derreumaux P
    J Phys Chem B; 2017 Jun; 121(24):5977-5987. PubMed ID: 28538095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins.
    Carballo-Pacheco M; Strodel B
    Protein Sci; 2017 Feb; 26(2):174-185. PubMed ID: 27727496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures.
    Gnanakaran S; García AE
    Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer's amyloid β-peptide.
    Gerben SR; Lemkul JA; Brown AM; Bevan DR
    J Biomol Struct Dyn; 2014; 32(11):1817-32. PubMed ID: 24028075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass.
    Snyder JA; Abramyan T; Yancey JA; Thyparambil AA; Wei Y; Stuart SJ; Latour RA
    Biointerphases; 2012 Dec; 7(1-4):56. PubMed ID: 22941539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives on the simulation of protein-surface interactions using empirical force field methods.
    Latour RA
    Colloids Surf B Biointerfaces; 2014 Dec; 124():25-37. PubMed ID: 25028242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.