BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22589105)

  • 1. Nanotube-grafted polyacrylamide hydrogels for electrophoretic protein separation.
    Gunavadhi M; Maria LA; Chamundeswari VN; Parthasarathy M
    Electrophoresis; 2012 Apr; 33(8):1271-5. PubMed ID: 22589105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube-modified sodium dodecyl sulfate-polyacrylamide gel electrophoresis for molecular weight determination of proteins.
    Parthasarathy M; Debgupta J; Kakade B; Ansary AA; Islam Khan M; Pillai VK
    Anal Biochem; 2011 Feb; 409(2):230-5. PubMed ID: 20971050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using in situ rheology to characterize the microstructure in photopolymerized polyacrylamide gels for DNA electrophoresis.
    Wang J; Ugaz VM
    Electrophoresis; 2006 Sep; 27(17):3349-58. PubMed ID: 16892481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Sep; 12(9):612-9. PubMed ID: 1752240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the pore structure of aqueous three-dimensional polyacrylamide gels with a novel cross-linker.
    Patras G; Qiao GG; Solomon DH
    Electrophoresis; 2000 Nov; 21(17):3843-50. PubMed ID: 11271502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanically strong matrix for protein electrophoresis with enhanced silver staining properties.
    Patton WF; Lopez MF; Barry P; Skea WM
    Biotechniques; 1992 Apr; 12(4):580-5. PubMed ID: 1503760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes-assisted polyacrylamide gel electrophoresis for enhanced separation of human serum proteins and application in liverish diagnosis.
    Jiang F; Wang Y; Hu X; Shao N; Na N; Delanghe JR; Ouyang J
    J Sep Sci; 2010 Nov; 33(21):3393-9. PubMed ID: 20928923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography.
    Yao K; Yun J; Shen S; Wang L; He X; Yu X
    J Chromatogr A; 2006 Mar; 1109(1):103-10. PubMed ID: 16455092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel cross-linked homogeneous polyacrylamide gels with improved separation properties: investigation of the cross-linker functionality.
    Patras G; Qiao GG; Solomon DH
    Electrophoresis; 2001 Dec; 22(20):4303-10. PubMed ID: 11824594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers.
    Stellwagen NC
    Electrophoresis; 1998 Jul; 19(10):1542-7. PubMed ID: 9719523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brief report: electrophoretic separation of oligonucleotides in replenishable polyacrylamide-filled capillaries.
    Heller C; Viovy JL
    Appl Theor Electrophor; 1994; 4(1):39-41. PubMed ID: 7811766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyacrylamide grafted on multi-walled carbon nanotubes for open-tubular capillary electrochromatography: comparison with silica hydride and polyacrylate phase matrices.
    Chen JL; Hsieh KH
    Electrophoresis; 2010 Dec; 31(23-24):3937-48. PubMed ID: 21077219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photopatterning of tough single-walled carbon nanotube composites in microfluidic channels and their application in gel-free separations.
    Makamba H; Huang JW; Chen HH; Chen SH
    Electrophoresis; 2008 Jun; 29(12):2458-65. PubMed ID: 18512680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoresis in gels.
    Westermeier R
    Methods Biochem Anal; 2011; 54():365-77. PubMed ID: 21954786
    [No Abstract]   [Full Text] [Related]  

  • 15. Enrichment and fractionation of proteins via microscale pore limit electrophoresis.
    Sommer GJ; Singh AK; Hatch AV
    Lab Chip; 2009 Sep; 9(18):2729-37. PubMed ID: 19704990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New types of large-pore polyacrylamide-agarose mixed-bed matrices for DNA electrophoresis: pore size estimation from Ferguson plots of DNA fragments.
    Chiari M; D'Alesio L; Consonni R; Righetti PG
    Electrophoresis; 1995 Aug; 16(8):1337-44. PubMed ID: 8529594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid (ten-minute) pore-gradient electrophoresis of proteins and peptides in Micrograd gels.
    Wrigley CW; Margolis J
    Appl Theor Electrophor; 1992; 3(1):13-6. PubMed ID: 1599958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SDS disc electrophoresis of proteins in homogeneous, low-concentrated polyacrylamide gels.
    Maly IP; Nitsch C
    Electrophoresis; 2007 May; 28(10):1508-13. PubMed ID: 17427254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels.
    Wu JY; Liu SQ; Heng PW; Yang YY
    J Control Release; 2005 Feb; 102(2):361-72. PubMed ID: 15653157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tris-Acetate Polyacrylamide Gradient Gels for the Simultaneous Electrophoretic Analysis of Proteins of Very High and Low Molecular Mass.
    Cubillos-Rojas M; Amair-Pinedo F; Tato I; Bartrons R; Ventura F; Rosa JL
    Methods Mol Biol; 2019; 1855():269-277. PubMed ID: 30426423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.