BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22589278)

  • 1. Reduced spiking in entorhinal cortex during the delay period of a cued spatial response task.
    Gupta K; Keller LA; Hasselmo ME
    Learn Mem; 2012 May; 19(6):219-30. PubMed ID: 22589278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional firing properties of postrhinal cortex neurons.
    Burwell RD; Hafeman DM
    Neuroscience; 2003; 119(2):577-88. PubMed ID: 12770570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of grid cell activity demonstrates in vivo entorhinal 'look-ahead' properties.
    Gupta K; Erdem UM; Hasselmo ME
    Neuroscience; 2013 Sep; 247():395-411. PubMed ID: 23660194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.
    Hargreaves EL; Yoganarasimha D; Knierim JJ
    Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices.
    Keene CS; Bladon J; McKenzie S; Liu CD; O'Keefe J; Eichenbaum H
    J Neurosci; 2016 Mar; 36(13):3660-75. PubMed ID: 27030753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing context-dependent differential firing activity in the hippocampus and entorhinal cortex.
    Prerau MJ; Lipton PA; Eichenbaum HB; Eden UT
    Hippocampus; 2014 Apr; 24(4):476-92. PubMed ID: 24436108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragmentation of grid cell maps in a multicompartment environment.
    Derdikman D; Whitlock JR; Tsao A; Fyhn M; Hafting T; Moser MB; Moser EI
    Nat Neurosci; 2009 Oct; 12(10):1325-32. PubMed ID: 19749749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positional firing properties of perirhinal cortex neurons.
    Burwell RD; Shapiro ML; O'Malley MT; Eichenbaum H
    Neuroreport; 1998 Sep; 9(13):3013-8. PubMed ID: 9804307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medial entorhinal grid cells and head direction cells rotate with a T-maze more often during less recently experienced rotations.
    Gupta K; Beer NJ; Keller LA; Hasselmo ME
    Cereb Cortex; 2014 Jun; 24(6):1630-44. PubMed ID: 23382518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral entorhinal neurons are not spatially selective in cue-rich environments.
    Yoganarasimha D; Rao G; Knierim JJ
    Hippocampus; 2011 Dec; 21(12):1363-74. PubMed ID: 20857485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required.
    Gaffan EA; Bannerman DM; Healey AN
    Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategic neuronal encoding in medial prefrontal cortex of spatial working memory in the T-maze.
    Yang Y; Mailman RB
    Behav Brain Res; 2018 May; 343():50-60. PubMed ID: 29378292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basolateral Amygdala Inputs to the Medial Entorhinal Cortex Selectively Modulate the Consolidation of Spatial and Contextual Learning.
    Wahlstrom KL; Huff ML; Emmons EB; Freeman JH; Narayanan NS; McIntyre CK; LaLumiere RT
    J Neurosci; 2018 Mar; 38(11):2698-2712. PubMed ID: 29431646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal versus hippocampal representations during win-stay maze performance.
    Berke JD; Breck JT; Eichenbaum H
    J Neurophysiol; 2009 Mar; 101(3):1575-87. PubMed ID: 19144741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting.
    Hasselmo ME
    Hippocampus; 2008; 18(12):1213-29. PubMed ID: 19021258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task.
    Schmitzer-Torbert N; Redish AD
    J Neurophysiol; 2004 May; 91(5):2259-72. PubMed ID: 14736863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Firing Rate Speed Code of Entorhinal Speed Cells Differs across Behaviorally Relevant Time Scales and Does Not Depend on Medial Septum Inputs.
    Dannenberg H; Kelley C; Hoyland A; Monaghan CK; Hasselmo ME
    J Neurosci; 2019 May; 39(18):3434-3453. PubMed ID: 30804092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K; Igaki S; Funahashi S
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unreinforced spatial (latent) learning is mediated by a circuit that includes dorsal entorhinal cortex and fimbria fornix.
    Gaskin S; White NM
    Hippocampus; 2007; 17(7):586-94. PubMed ID: 17455197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.