These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22589415)

  • 1. Measurements of DNA-loop formation via Cre-mediated recombination.
    Shoura MJ; Vetcher AA; Giovan SM; Bardai F; Bharadwaj A; Kesinger MR; Levene SD
    Nucleic Acids Res; 2012 Aug; 40(15):7452-64. PubMed ID: 22589415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination.
    Shoura MJ; Giovan SM; Vetcher AA; Ziraldo R; Hanke A; Levene SD
    Nucleic Acids Res; 2020 May; 48(8):4371-4381. PubMed ID: 32182357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse.
    Guo F; Gopaul DN; van Duyne GD
    Nature; 1997 Sep; 389(6646):40-6. PubMed ID: 9288963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence.
    Pinkney JN; Zawadzki P; Mazuryk J; Arciszewska LK; Sherratt DJ; Kapanidis AN
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20871-6. PubMed ID: 23184986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination.
    Gopaul DN; Guo F; Van Duyne GD
    EMBO J; 1998 Jul; 17(14):4175-87. PubMed ID: 9670032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles of site-specific recombinase (SSR) technology.
    Bucholtz F
    J Vis Exp; 2008 May; (15):. PubMed ID: 19066587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation.
    Ennifar E; Meyer JE; Buchholz F; Stewart AF; Suck D
    Nucleic Acids Res; 2003 Sep; 31(18):5449-60. PubMed ID: 12954782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA topology and geometry in Flp and Cre recombination.
    Vetcher AA; Lushnikov AY; Navarra-Madsen J; Scharein RG; Lyubchenko YL; Darcy IK; Levene SD
    J Mol Biol; 2006 Apr; 357(4):1089-104. PubMed ID: 16483600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Cre recombination by regulatory elements from Xer recombination systems.
    Gourlay SC; Colloms SD
    Mol Microbiol; 2004 Apr; 52(1):53-65. PubMed ID: 15049810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments.
    Christ N; Corona T; Dröge P
    J Mol Biol; 2002 May; 319(2):305-14. PubMed ID: 12051908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chimeric Cre recombinase with regulated directionality.
    Warren D; Laxmikanthan G; Landy A
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18278-83. PubMed ID: 19011106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination.
    Fan HF
    Nucleic Acids Res; 2012 Jul; 40(13):6208-22. PubMed ID: 22467208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural view of cre-loxp site-specific recombination.
    Van Duyne GD
    Annu Rev Biophys Biomol Struct; 2001; 30():87-104. PubMed ID: 11340053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The topological mechanism of phage lambda integrase.
    Crisona NJ; Weinberg RL; Peter BJ; Sumners DW; Cozzarelli NR
    J Mol Biol; 1999 Jun; 289(4):747-75. PubMed ID: 10369759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination.
    Ringrose L; Lounnas V; Ehrlich L; Buchholz F; Wade R; Stewart AF
    J Mol Biol; 1998 Nov; 284(2):363-84. PubMed ID: 9813124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearest-neighbor amino acids of specificity-determining residues influence the activity of engineered Cre-type recombinases.
    Soni A; Augsburg M; Buchholz F; Pisabarro MT
    Sci Rep; 2020 Aug; 10(1):13985. PubMed ID: 32814809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and DNA substrate recognition by the catalytic domain of lambda integrase.
    Subramaniam S; Tewari AK; Nunes-Duby SE; Foster MP
    J Mol Biol; 2003 Jun; 329(3):423-39. PubMed ID: 12767827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The order of strand exchanges in Cre-LoxP recombination and its basis suggested by the crystal structure of a Cre-LoxP Holliday junction complex.
    Martin SS; Pulido E; Chu VC; Lechner TS; Baldwin EP
    J Mol Biol; 2002 May; 319(1):107-27. PubMed ID: 12051940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Cre-loxP interaction by surface plasmon resonance: influence of spermidine on cooperativity.
    Rüfer A; Neuenschwander PF; Sauer B
    Anal Biochem; 2002 Sep; 308(1):90-9. PubMed ID: 12234468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-equivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a three-way Lox DNA junction.
    Woods KC; Martin SS; Chu VC; Baldwin EP
    J Mol Biol; 2001 Oct; 313(1):49-69. PubMed ID: 11601846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.