These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22589416)

  • 1. Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes.
    Vohradsky J
    Nucleic Acids Res; 2012 Aug; 40(15):7096-103. PubMed ID: 22589416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.
    Vohradska E; Vohradsky J
    PLoS One; 2011 Apr; 6(4):e18827. PubMed ID: 21541341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global control of cell-cycle transcription by coupled CDK and network oscillators.
    Orlando DA; Lin CY; Bernard A; Wang JY; Socolar JE; Iversen ES; Hartemink AJ; Haase SB
    Nature; 2008 Jun; 453(7197):944-7. PubMed ID: 18463633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serial regulation of transcriptional regulators in the yeast cell cycle.
    Simon I; Barnett J; Hannett N; Harbison CT; Rinaldi NJ; Volkert TL; Wyrick JJ; Zeitlinger J; Gifford DK; Jaakkola TS; Young RA
    Cell; 2001 Sep; 106(6):697-708. PubMed ID: 11572776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae.
    Hu F; Aparicio OM
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8910-5. PubMed ID: 15956196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae.
    Bitter GA
    Mol Gen Genet; 1998 Oct; 260(1):120-30. PubMed ID: 9829836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle transcriptomics of Capsaspora provides insights into the evolution of cyclin-CDK machinery.
    Pérez-Posada A; Dudin O; Ocaña-Pallarès E; Ruiz-Trillo I; Ondracka A
    PLoS Genet; 2020 Mar; 16(3):e1008584. PubMed ID: 32176685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclins, cyclin-dependent kinases and differentiation.
    Gao CY; Zelenka PS
    Bioessays; 1997 Apr; 19(4):307-15. PubMed ID: 9136628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cyclin family of budding yeast: abundant use of a good idea.
    Andrews B; Measday V
    Trends Genet; 1998 Feb; 14(2):66-72. PubMed ID: 9520600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle.
    Ferrezuelo F; Colomina N; Futcher B; Aldea M
    Genome Biol; 2010; 11(6):R67. PubMed ID: 20573214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The minimum domain of Pho81 is not sufficient to control the Pho85-Rim15 effector branch involved in phosphate starvation-induced stress responses.
    Swinnen E; Rosseels J; Winderickx J
    Curr Genet; 2005 Jul; 48(1):18-33. PubMed ID: 15926040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase.
    Measday V; Moore L; Retnakaran R; Lee J; Donoviel M; Neiman AM; Andrews B
    Mol Cell Biol; 1997 Mar; 17(3):1212-23. PubMed ID: 9032248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at start, whereas Clb/Cdc28 kinases displace it from the promoter in G2.
    Koch C; Schleiffer A; Ammerer G; Nasmyth K
    Genes Dev; 1996 Jan; 10(2):129-41. PubMed ID: 8566747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network.
    To CC; Vohradsky J
    FASEB J; 2010 Sep; 24(9):3468-78. PubMed ID: 20511392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements.
    Stuart D; Wittenberg C
    Mol Cell Biol; 1994 Jul; 14(7):4788-801. PubMed ID: 8007978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.
    Ball DA; Adames NR; Reischmann N; Barik D; Franck CT; Tyson JJ; Peccoud J
    Cell Cycle; 2013 Oct; 12(19):3203-18. PubMed ID: 24013422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for the Pcl9-Pho85 cyclin-cdk complex at the M/G1 boundary in Saccharomyces cerevisiae.
    Tennyson CN; Lee J; Andrews BJ
    Mol Microbiol; 1998 Apr; 28(1):69-79. PubMed ID: 9593297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of controlled proteolysis in cell-cycle regulation.
    Udvardy A
    Eur J Biochem; 1996 Sep; 240(2):307-13. PubMed ID: 8841392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle-regulated transcription: effectively using a genomics toolbox.
    Bristow SL; Leman AR; Haase SB
    Methods Mol Biol; 2014; 1170():3-27. PubMed ID: 24906306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.