BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22589534)

  • 1. Discovery of a novel allosteric modulator of 5-HT3 receptors: inhibition and potentiation of Cys-loop receptor signaling through a conserved transmembrane intersubunit site.
    Trattnig SM; Harpsøe K; Thygesen SB; Rahr LM; Ahring PK; Balle T; Jensen AA
    J Biol Chem; 2012 Jul; 287(30):25241-54. PubMed ID: 22589534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-Chloroindole: a potent allosteric modulator of the 5-HT₃ receptor.
    Newman AS; Batis N; Grafton G; Caputo F; Brady CA; Lambert JJ; Peters JA; Gordon J; Brain KL; Powell AD; Barnes NM
    Br J Pharmacol; 2013 Jul; 169(6):1228-38. PubMed ID: 23594147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors.
    Gasiorek A; Trattnig SM; Ahring PK; Kristiansen U; Frølund B; Frederiksen K; Jensen AA
    Biochem Pharmacol; 2016 Jun; 110-111():92-108. PubMed ID: 27086281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel mechanism of modulation at a ligand-gated ion channel; action of 5-Cl-indole at the 5-HT
    Powell AD; Grafton G; Roberts A; Larkin S; O'Neill N; Palandri J; Otvos R; Cooper AJ; Ulens C; Barnes NM
    Br J Pharmacol; 2016 Dec; 173(24):3467-3479. PubMed ID: 27677804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.
    Lansdell SJ; Sathyaprakash C; Doward A; Millar NS
    Mol Pharmacol; 2015 Jan; 87(1):87-95. PubMed ID: 25338672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GABA rho1 receptors lacking the large cytoplasmic M3M4 loop.
    Jansen M; Bali M; Akabas MH
    J Gen Physiol; 2008 Feb; 131(2):137-46. PubMed ID: 18227272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in 5-HT3 receptor pharmacology.
    Thompson AJ
    Trends Pharmacol Sci; 2013 Feb; 34(2):100-9. PubMed ID: 23380247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The L293 residue in transmembrane domain 2 of the 5-HT3A receptor is a molecular determinant of allosteric modulation by 5-hydroxyindole.
    Hu XQ; Lovinger DM
    Neuropharmacology; 2008 Jun; 54(8):1153-65. PubMed ID: 18436267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring a potential palonosetron allosteric binding site in the 5-HT(3) receptor.
    Del Cadia M; De Rienzo F; Weston DA; Thompson AJ; Menziani MC; Lummis SC
    Bioorg Med Chem; 2013 Dec; 21(23):7523-8. PubMed ID: 24128813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating between 5-HT₃A and 5-HT₃AB receptors.
    Thompson AJ; Lummis SC
    Br J Pharmacol; 2013 Jun; 169(4):736-47. PubMed ID: 23489111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auto-inhibition at a ligand-gated ion channel: a cross-talk between orthosteric and allosteric sites.
    Hu XQ
    Br J Pharmacol; 2015 Jan; 172(1):93-105. PubMed ID: 25176133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit-dependent inhibition and potentiation of 5-HT3 receptor by the anticancer drug, topotecan.
    Nakamura Y; Ishida Y; Yamada T; Kondo M; Shimada S
    J Neurochem; 2013 Apr; 125(1):7-15. PubMed ID: 23305320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved cysteine residue in the third transmembrane domain is essential for homomeric 5-HT3 receptor function.
    Wu DF; Othman NA; Sharp D; Mahendra A; Deeb TZ; Hales TG
    J Physiol; 2010 Feb; 588(Pt 4):603-16. PubMed ID: 19933756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A triad of residues is functionally transferrable between 5-HT
    Mosesso R; Dougherty DA
    J Biol Chem; 2018 Feb; 293(8):2903-2914. PubMed ID: 29298898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palonosetron-5-HT
    Price KL; Lillestol RK; Ulens C; Lummis SC
    ACS Chem Neurosci; 2016 Dec; 7(12):1641-1646. PubMed ID: 27656911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonists and antagonists induce different palonosetron dissociation rates in 5-HT₃A and 5-HT₃AB receptors.
    Lummis SC; Thompson AJ
    Neuropharmacology; 2013 Oct; 73():241-6. PubMed ID: 23747573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Changes in the 5-HT
    Munro L; Ladefoged LK; Padmanathan V; Andersen S; Schiøtt B; Kristensen AS
    Mol Pharmacol; 2019 Dec; 96(6):720-734. PubMed ID: 31582575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT
    Alix K; Khatri S; Mosier PD; Casterlow S; Yan D; Nyce HL; White MM; Schulte MK; Dukat M
    ACS Chem Neurosci; 2016 Nov; 7(11):1565-1574. PubMed ID: 27533595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-HT(3) receptors.
    Lummis SC
    J Biol Chem; 2012 Nov; 287(48):40239-45. PubMed ID: 23038271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a 5-HT
    Price KL; Lummis SCR
    ACS Chem Neurosci; 2018 Jun; 9(6):1409-1415. PubMed ID: 29508995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.