These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 22589538)
1. Significant impact of single N-glycan residues on the biological activity of Fc-based antibody-like fragments. Jez J; Antes B; Castilho A; Kainer M; Wiederkum S; Grass J; Rüker F; Woisetschläger M; Steinkellner H J Biol Chem; 2012 Jul; 287(29):24313-9. PubMed ID: 22589538 [TBL] [Abstract][Full Text] [Related]
2. Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. Forthal DN; Gach JS; Landucci G; Jez J; Strasser R; Kunert R; Steinkellner H J Immunol; 2010 Dec; 185(11):6876-82. PubMed ID: 21041724 [TBL] [Abstract][Full Text] [Related]
3. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348 [TBL] [Abstract][Full Text] [Related]
4. Restricted processing of CD16a/Fc γ receptor IIIa Patel KR; Roberts JT; Subedi GP; Barb AW J Biol Chem; 2018 Mar; 293(10):3477-3489. PubMed ID: 29330305 [TBL] [Abstract][Full Text] [Related]
5. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor. Zou G; Ochiai H; Huang W; Yang Q; Li C; Wang LX J Am Chem Soc; 2011 Nov; 133(46):18975-91. PubMed ID: 22004528 [TBL] [Abstract][Full Text] [Related]
6. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Ferrara C; Grau S; Jäger C; Sondermann P; Brünker P; Waldhauer I; Hennig M; Ruf A; Rufer AC; Stihle M; Umaña P; Benz J Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12669-74. PubMed ID: 21768335 [TBL] [Abstract][Full Text] [Related]
8. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants. Dashivets T; Thomann M; Rueger P; Knaupp A; Buchner J; Schlothauer T PLoS One; 2015; 10(12):e0143520. PubMed ID: 26657484 [TBL] [Abstract][Full Text] [Related]
9. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa. Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024 [TBL] [Abstract][Full Text] [Related]
10. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. Wada R; Matsui M; Kawasaki N MAbs; 2019; 11(2):350-372. PubMed ID: 30466347 [TBL] [Abstract][Full Text] [Related]
11. Diversity in structure and functions of antibody sialylation in the Fc. Raju TS; Lang SE Curr Opin Biotechnol; 2014 Dec; 30():147-52. PubMed ID: 25032906 [TBL] [Abstract][Full Text] [Related]
12. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Raju TS Curr Opin Immunol; 2008 Aug; 20(4):471-8. PubMed ID: 18606225 [TBL] [Abstract][Full Text] [Related]
13. In vivo and in vitro activity of an immunoglobulin Fc fragment (Fcab) with engineered Her-2/neu binding sites. Woisetschläger M; Antes B; Borrowdale R; Wiederkum S; Kainer M; Steinkellner H; Wozniak-Knopp G; Moulder K; Rüker F; Mudde GC Biotechnol J; 2014 Jun; 9(6):844-51. PubMed ID: 24806546 [TBL] [Abstract][Full Text] [Related]
14. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Hodoniczky J; Zheng YZ; James DC Biotechnol Prog; 2005; 21(6):1644-52. PubMed ID: 16321047 [TBL] [Abstract][Full Text] [Related]
15. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
16. An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Harbison A; Fadda E Glycobiology; 2020 May; 30(6):407-414. PubMed ID: 31829411 [TBL] [Abstract][Full Text] [Related]
17. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. Kurogochi M; Mori M; Osumi K; Tojino M; Sugawara S; Takashima S; Hirose Y; Tsukimura W; Mizuno M; Amano J; Matsuda A; Tomita M; Takayanagi A; Shoda S; Shirai T PLoS One; 2015; 10(7):e0132848. PubMed ID: 26200113 [TBL] [Abstract][Full Text] [Related]
18. The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa binding affinity to IgG glycoforms lacking core fucosylation. Shibata-Koyama M; Iida S; Okazaki A; Mori K; Kitajima-Miyama K; Saitou S; Kakita S; Kanda Y; Shitara K; Kato K; Satoh M Glycobiology; 2009 Feb; 19(2):126-34. PubMed ID: 18952826 [TBL] [Abstract][Full Text] [Related]
19. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Hills AE; Patel A; Boyd P; James DC Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148 [TBL] [Abstract][Full Text] [Related]
20. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function. Chung AW; Crispin M; Pritchard L; Robinson H; Gorny MK; Yu X; Bailey-Kellogg C; Ackerman ME; Scanlan C; Zolla-Pazner S; Alter G AIDS; 2014 Nov; 28(17):2523-30. PubMed ID: 25160934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]