BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 22589710)

  • 1. Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2012; 8(5):e1002506. PubMed ID: 22589710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction.
    Fenwick AJ; Wood AM; Tanner BCW
    Arch Biochem Biophys; 2021 May; 703():108855. PubMed ID: 33781771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcomere lattice geometry influences cooperative myosin binding in muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological consequences of thin filament cooperativity for vertebrate striated muscle contraction: a theoretical study.
    Iwamoto H
    J Muscle Res Cell Motil; 2006; 27(1):21-35. PubMed ID: 16465469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Spatially Detailed Model of Isometric Contraction Based on Competitive Binding of Troponin I Explains Cooperative Interactions between Tropomyosin and Crossbridges.
    Land S; Niederer SA
    PLoS Comput Biol; 2015 Aug; 11(8):e1004376. PubMed ID: 26262582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers.
    Martyn DA; Chase PB; Regnier M; Gordon AM
    Biophys J; 2002 Dec; 83(6):3425-34. PubMed ID: 12496109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of striated muscle: nearest-neighbor regulatory-unit and cross-bridge influence on myofilament kinetics.
    Robinson JM; Wang Y; Kerrick WG; Kawai R; Cheung HC
    J Mol Biol; 2002 Oct; 322(5):1065-88. PubMed ID: 12367529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myofilament kinetics in isometric twitch dynamics.
    Campbell KB; Razumova MV; Kirkpatrick RD; Slinker BK
    Ann Biomed Eng; 2001 May; 29(5):384-405. PubMed ID: 11400720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca(2+) relations.
    Regnier M; Rivera AJ; Wang CK; Bates MA; Chase PB; Gordon AM
    J Physiol; 2002 Apr; 540(Pt 2):485-97. PubMed ID: 11956338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The force of the myosin motor sets cooperativity in thin filament activation of skeletal muscles.
    Caremani M; Marcello M; Morotti I; Pertici I; Squarci C; Reconditi M; Bianco P; Piazzesi G; Lombardi V; Linari M
    Commun Biol; 2022 Nov; 5(1):1266. PubMed ID: 36400920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatially explicit nanomechanical model of the half-sarcomere: myofilament compliance affects Ca(2+)-activation.
    Chase PB; Macpherson JM; Daniel TL
    Ann Biomed Eng; 2004 Nov; 32(11):1559-68. PubMed ID: 15636115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of enhanced troponin C Ca2+-binding affinity on cooperative thin filament activation in rabbit skeletal muscle.
    Kreutziger KL; Gillis TE; Davis JP; Tikunova SB; Regnier M
    J Physiol; 2007 Aug; 583(Pt 1):337-50. PubMed ID: 17584846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac troponin C (TnC) and a site I skeletal TnC mutant alter Ca2+ versus crossbridge contribution to force in rabbit skeletal fibres.
    Moreno-Gonzalez A; Fredlund J; Regnier M
    J Physiol; 2005 Feb; 562(Pt 3):873-84. PubMed ID: 15611027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of three regulatory states of the striated muscle thin filament.
    Van Dijk J; Knight AE; Molloy JE; Chaussepied P
    J Mol Biol; 2002 Oct; 323(3):475-89. PubMed ID: 12381303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of thin filament near-neighbour regulatory unit interactions during force development in skinned cardiac and skeletal muscle.
    Gillis TE; Martyn DA; Rivera AJ; Regnier M
    J Physiol; 2007 Apr; 580(Pt. 2):561-76. PubMed ID: 17317743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C.
    Metzger JM; Moss RL
    J Gen Physiol; 1991 Aug; 98(2):233-48. PubMed ID: 1940850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac muscle regulatory units are predicted to interact stronger than neighboring cross-bridges.
    Kalda M; Vendelin M
    Sci Rep; 2020 Mar; 10(1):5530. PubMed ID: 32218497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin.
    Kad NM; Kim S; Warshaw DM; VanBuren P; Baker JE
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):16990-5. PubMed ID: 16287977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of altered temperature on Ca2(+)-sensitive force in permeabilized myocardium and skeletal muscle. Evidence for force dependence of thin filament activation.
    Sweitzer NK; Moss RL
    J Gen Physiol; 1990 Dec; 96(6):1221-45. PubMed ID: 2286833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.