These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22590550)

  • 1. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation for coal-fired power stations using macroalgae.
    Roberts DA; Paul NA; Bird MI; de Nys R
    J Environ Manage; 2015 Apr; 153():25-32. PubMed ID: 25646673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.
    Roberts DA; de Nys R; Paul NA
    PLoS One; 2013; 8(11):e81631. PubMed ID: 24278451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.
    Ellison MB; de Nys R; Paul NA; Roberts DA
    PeerJ; 2014; 2():e401. PubMed ID: 24883258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From waste water treatment to land management: Conversion of aquatic biomass to biochar for soil amelioration and the fortification of crops with essential trace elements.
    Roberts DA; Paul NA; Cole AJ; de Nys R
    J Environ Manage; 2015 Jul; 157():60-8. PubMed ID: 25881153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential use of algae for heavy metal bioremediation, a critical review.
    Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP
    J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.
    Ibrahim WM; Mutawie HH
    Toxicol Ind Health; 2013 Feb; 29(1):38-42. PubMed ID: 22661401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae-mediated bioremediation: current trends and opportunities-a review.
    Ali SS; Hassan LHS; El-Sheekh M
    Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater.
    Znad H; Awual MR; Martini S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.
    Kidgell JT; de Nys R; Paul NA; Roberts DA
    PLoS One; 2014; 9(7):e101309. PubMed ID: 25061756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).
    Sode S; Bruhn A; Balsby TJS; Larsen MM; Gotfredsen A; Rasmussen MB
    Bioresour Technol; 2013 Oct; 146():426-435. PubMed ID: 23954716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
    Chatterjee SK; Bhattacharjee I; Chandra G
    J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.
    Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal resistance in algae and its application for metal nanoparticle synthesis.
    Priyadarshini E; Priyadarshini SS; Pradhan N
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3297-3316. PubMed ID: 30847543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques.
    Yaashikaa PR; Palanivelu J; Hemavathy RV
    Chemosphere; 2024 Jun; 357():141933. PubMed ID: 38615953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling.
    Yuan Q; Zhang Y; Wang T; Wang J; Romero CE
    Waste Manag; 2021 Nov; 135():428-436. PubMed ID: 34619624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.
    Torres EM; Hess D; McNeil BT; Guy T; Quinn JC
    Ecotoxicol Environ Saf; 2017 May; 139():367-376. PubMed ID: 28189778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.
    Johansson CL; Paul NA; de Nys R; Roberts DA
    J Environ Manage; 2016 Jan; 165():117-123. PubMed ID: 26413805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Trapa bipinosa for the treatment of pulp and paper industry effluent.
    Kousar H; Puttaiah ET
    J Environ Biol; 2009 Sep; 30(5):659-61. PubMed ID: 20136044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.