These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 22590597)
1. Modelling transmission of vector-borne pathogens shows complex dynamics when vector feeding sites are limited. Kershenbaum A; Stone L; Ostfeld RS; Blaustein L PLoS One; 2012; 7(5):e36730. PubMed ID: 22590597 [TBL] [Abstract][Full Text] [Related]
2. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis. Bichara D; Iggidr A; Smith L Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599 [TBL] [Abstract][Full Text] [Related]
3. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System. Gulbudak H; Cannataro VL; Tuncer N; Martcheva M Bull Math Biol; 2017 Feb; 79(2):325-355. PubMed ID: 28032207 [TBL] [Abstract][Full Text] [Related]
4. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Bolzoni L; Rosà R; Cagnacci F; Rizzoli A Int J Parasitol; 2012 Apr; 42(4):373-81. PubMed ID: 22429768 [TBL] [Abstract][Full Text] [Related]
5. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models. Moore SM; Borer ET; Hosseini PR J R Soc Interface; 2010 Jan; 7(42):161-76. PubMed ID: 19474078 [TBL] [Abstract][Full Text] [Related]
6. Effect of Intermediate Hosts on Emerging Zoonoses. Cui JA; Chen F; Fan S Vector Borne Zoonotic Dis; 2017 Aug; 17(8):599-609. PubMed ID: 28678630 [TBL] [Abstract][Full Text] [Related]
7. A field test of the dilution effect hypothesis in four avian multi-host pathogens. Ferraguti M; Martínez-de la Puente J; Jiménez-Clavero MÁ; Llorente F; Roiz D; Ruiz S; Soriguer R; Figuerola J PLoS Pathog; 2021 Jun; 17(6):e1009637. PubMed ID: 34161394 [TBL] [Abstract][Full Text] [Related]
8. Ecosystem dynamics, biological diversity and emerging infectious diseases. Roche B; Guégan JF C R Biol; 2011 May; 334(5-6):385-92. PubMed ID: 21640947 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity Analysis in an Immuno-Epidemiological Vector-Host Model. Gulbudak H; Qu Z; Milner F; Tuncer N Bull Math Biol; 2022 Jan; 84(2):27. PubMed ID: 34982249 [TBL] [Abstract][Full Text] [Related]
10. Arthropod-borne pathogens of dogs and cats: From pathways and times of transmission to disease control. Otranto D Vet Parasitol; 2018 Feb; 251():68-77. PubMed ID: 29426479 [TBL] [Abstract][Full Text] [Related]
11. The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis. Rivera RC; Bilal S; Michael E Math Biosci Eng; 2020 Aug; 17(5):5561-5583. PubMed ID: 33120566 [TBL] [Abstract][Full Text] [Related]
12. Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation. Rosà R; Pugliese A; Norman R; Hudson PJ J Theor Biol; 2003 Oct; 224(3):359-76. PubMed ID: 12941594 [TBL] [Abstract][Full Text] [Related]
13. Applying the theory of island biogeography to emerging pathogens: toward predicting the sources of future emerging zoonotic and vector-borne diseases. Reperant LA Vector Borne Zoonotic Dis; 2010 Mar; 10(2):105-10. PubMed ID: 19589061 [TBL] [Abstract][Full Text] [Related]
14. The Relationship between Vector Species Richness and the Risk of Vector-Borne Infectious Diseases. Takimoto G; Shirakawa H; Sato T Am Nat; 2022 Sep; 200(3):330-344. PubMed ID: 35977790 [TBL] [Abstract][Full Text] [Related]
15. The effect of host movement on viral transmission dynamics in a vector-borne disease system. Watts EJ; Palmer SC; Bowman AS; Irvine RJ; Smith A; Travis JM Parasitology; 2009 Sep; 136(10):1221-34. PubMed ID: 19631009 [TBL] [Abstract][Full Text] [Related]
16. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system. Shoemaker LG; Hayhurst E; Weiss-Lehman CP; Strauss AT; Porath-Krause A; Borer ET; Seabloom EW; Shaw AK Ecol Lett; 2019 Jul; 22(7):1115-1125. PubMed ID: 31090159 [TBL] [Abstract][Full Text] [Related]
17. Transmission Fitness in Co-colonization and the Persistence of Bacterial Pathogens. Gaivão M; Dionisio F; Gjini E Bull Math Biol; 2017 Sep; 79(9):2068-2087. PubMed ID: 28741105 [TBL] [Abstract][Full Text] [Related]
18. Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system. Simpson JE; Hurtado PJ; Medlock J; Molaei G; Andreadis TG; Galvani AP; Diuk-Wasser MA Proc Biol Sci; 2012 Mar; 279(1730):925-33. PubMed ID: 21849315 [TBL] [Abstract][Full Text] [Related]
19. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Mills JN; Gage KL; Khan AS Environ Health Perspect; 2010 Nov; 118(11):1507-14. PubMed ID: 20576580 [TBL] [Abstract][Full Text] [Related]
20. How ticks keep ticking in the adversity of host immune reactions. Jennings R; Kuang Y; Thieme HR; Wu J; Wu X J Math Biol; 2019 Apr; 78(5):1331-1364. PubMed ID: 30478760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]