These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22590690)

  • 1. Projective simulation for artificial intelligence.
    Briegel HJ; De las Cuevas G
    Sci Rep; 2012; 2():400. PubMed ID: 22590690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning interfaces for biomedical database systems.
    Rudowsky I; Kulyba O; Kunin M; Parsons S; Raphan T
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6269-72. PubMed ID: 17946754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entropy learning and relevance criteria for neural network pruning.
    Ng GS; Wahab A; Shi D
    Int J Neural Syst; 2003 Oct; 13(5):291-305. PubMed ID: 14652871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically clustered adaptive quantization CMAC and its learning convergence.
    Teddy SD; Lai EM; Quek C
    IEEE Trans Neural Netw; 2007 Nov; 18(6):1658-82. PubMed ID: 18051184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classic Hebbian learning endows feed-forward networks with sufficient adaptability in challenging reinforcement learning tasks.
    Burns TF
    J Neurophysiol; 2021 Jun; 125(6):2034-2037. PubMed ID: 33909499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projective simulation with generalization.
    Melnikov AA; Makmal A; Dunjko V; Briegel HJ
    Sci Rep; 2017 Oct; 7(1):14430. PubMed ID: 29089575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the convergence of projective-simulation-based reinforcement learning in Markov decision processes.
    Boyajian WL; Clausen J; Trenkwalder LM; Dunjko V; Briegel HJ
    Quantum Mach Intell; 2020; 2(2):13. PubMed ID: 33184611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ToyArchitecture: Unsupervised learning of interpretable models of the environment.
    Vítků J; Dluhoš P; Davidson J; Nikl M; Andersson S; Paška P; Šinkora J; Hlubuček P; Stránský M; Hyben M; Poliak M; Feyereisl J; Rosa M
    PLoS One; 2020; 15(5):e0230432. PubMed ID: 32421693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming Challenges of Applying Reinforcement Learning for Intelligent Vehicle Control.
    Pina R; Tibebu H; Hook J; De Silva V; Kondoz A
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural and cognitive architecture for learning from a small sample.
    Cortese A; De Martino B; Kawato M
    Curr Opin Neurobiol; 2019 Apr; 55():133-141. PubMed ID: 30953964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal memories for machine learning: a long-term memory organization.
    Starzyk JA; He H
    IEEE Trans Neural Netw; 2009 May; 20(5):768-80. PubMed ID: 19336289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning offline: memory replay in biological and artificial reinforcement learning.
    Roscow EL; Chua R; Costa RP; Jones MW; Lepora N
    Trends Neurosci; 2021 Oct; 44(10):808-821. PubMed ID: 34481635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards computing with proteins.
    Unger R; Moult J
    Proteins; 2006 Apr; 63(1):53-64. PubMed ID: 16435369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Placing language in an integrated understanding system: Next steps toward human-level performance in neural language models.
    McClelland JL; Hill F; Rudolph M; Baldridge J; Schütze H
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):25966-25974. PubMed ID: 32989131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BAM learning of nonlinearly separable tasks by using an asymmetrical output function and reinforcement learning.
    Chartier S; Boukadoum M; Amiri M
    IEEE Trans Neural Netw; 2009 Aug; 20(8):1281-92. PubMed ID: 19596635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a Less Artificial Intelligence.
    Sinz FH; Pitkow X; Reimer J; Bethge M; Tolias AS
    Neuron; 2019 Sep; 103(6):967-979. PubMed ID: 31557461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient learning algorithms for ontology computing.
    Gao W; Zhu L
    Comput Intell Neurosci; 2014; 2014():438291. PubMed ID: 25530752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elman backpropagation as reinforcement for simple recurrent networks.
    Grüning A
    Neural Comput; 2007 Nov; 19(11):3108-31. PubMed ID: 17883351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational neural networks: enhancing supervised learning algorithms via self-organization.
    Holdaway RM; White MW
    Int J Biomed Comput; 1990 Apr; 25(2-3):151-67. PubMed ID: 2345046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.