BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22590743)

  • 21. Effects of sulfonylureas on mitochondrial ATP-sensitive K+ channels in cardiac myocytes: implications for sulfonylurea controversy.
    Sato T; Nishida H; Miyazaki M; Nakaya H
    Diabetes Metab Res Rev; 2006; 22(5):341-7. PubMed ID: 16444778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Regulation of rat airway smooth muscle cell proliferation by mitochondrial ATP-sensitive K(+) channel in asthmic rats.].
    Zhao JP; Gao M; Ye YJ; Hu WH; Zhou ZG; Hu HL
    Sheng Li Xue Bao; 2009 Feb; 61(1):65-71. PubMed ID: 19224056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale.
    Akopova O; Kolchinskaya L; Nosar V; Mankovska I; Sagach V
    BMC Mol Cell Biol; 2020 Apr; 21(1):31. PubMed ID: 32306897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain.
    Bajgar R; Seetharaman S; Kowaltowski AJ; Garlid KD; Paucek P
    J Biol Chem; 2001 Sep; 276(36):33369-74. PubMed ID: 11441006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of K(ATP) channel openers, P-1075, pinacidil, and diazoxide, on energetics and contractile function in isolated rat hearts.
    Jilkina O; Kuzio B; Grover GJ; Kupriyanov VV
    J Mol Cell Cardiol; 2002 Apr; 34(4):427-40. PubMed ID: 11991732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance.
    Watanabe M; Katsura K; Ohsawa I; Mizukoshi G; Takahashi K; Asoh S; Ohta S; Katayama Y
    Brain Res; 2008 Oct; 1238():199-207. PubMed ID: 18773879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of potential-dependent potassium uptake on production of reactive oxygen species in rat brain mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovska IN; Sagach VF
    Biochemistry (Mosc); 2014 Jan; 79(1):44-53. PubMed ID: 24512663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protective effects of the potassium channel opener-diazoxide against injury in neonatal rat ventricular myocytes.
    Kicińska A; Szewczyk A
    Gen Physiol Biophys; 2003 Sep; 22(3):383-95. PubMed ID: 14986888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protective role of mitochondrial K-ATP channel and mitochondrial membrane transport pore in rat kidney ischemic postconditioning.
    Zhang WL; Zhao YL; Liu XM; Chen J; Zhang D
    Chin Med J (Engl); 2011 Jul; 124(14):2191-5. PubMed ID: 21933625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial ROMK channel is a molecular component of mitoK(ATP).
    Foster DB; Ho AS; Rucker J; Garlid AO; Chen L; Sidor A; Garlid KD; O'Rourke B
    Circ Res; 2012 Aug; 111(4):446-54. PubMed ID: 22811560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The KATP channel opener diazoxide protects cardiac myocytes during metabolic inhibition without causing mitochondrial depolarization or flavoprotein oxidation.
    Lawrence CL; Billups B; Rodrigo GC; Standen NB
    Br J Pharmacol; 2001 Oct; 134(3):535-42. PubMed ID: 11588107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opening of astrocytic mitochondrial ATP-sensitive potassium channels upregulates electrical coupling between hippocampal astrocytes in rat brain slices.
    Wang J; Li Z; Feng M; Ren K; Shen G; Zhao C; Jin X; Jiang K
    PLoS One; 2013; 8(2):e56605. PubMed ID: 23418587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do modulators of the mitochondrial K(ATP) channel change the function of mitochondria in situ?
    Ovide-Bordeaux S; Ventura-Clapier R; Veksler V
    J Biol Chem; 2000 Nov; 275(47):37291-5. PubMed ID: 10970894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The effect of ATP-dependent K(+)-channel opener on transmembrane potassium exchange and reactive oxygen species production upon the opening of mitochondrial pore].
    Akopova OV; Kolchinskaia LI; Nosar' VI; Buryĭ VA; Man'kovskaia IN; Sagach VF
    Ukr Biochem J; 2014; 86(2):26-40. PubMed ID: 24868909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The effect of potential-dependent potassium uptake on membrane potential in rat brain mitochondria].
    Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF
    Ukr Biokhim Zh (1999); 2013; 85(1):33-41. PubMed ID: 23534288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks.
    Xi Q; Cheranov SY; Jaggar JH
    Circ Res; 2005 Aug; 97(4):354-62. PubMed ID: 16020754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats.
    Katakam PV; Gordon AO; Sure VN; Rutkai I; Busija DW
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(4):H493-503. PubMed ID: 24929852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate inhibits toxicity of 6-hydroxydopamine on dopaminergic neurons.
    Rodriguez-Pallares J; Parga JA; Joglar B; Guerra MJ; Labandeira-Garcia JL
    Neurotox Res; 2009 Jan; 15(1):82-95. PubMed ID: 19384591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibitory effect of glybenclamide on mitochondrial chloride channels from rat heart.
    Kominkova V; Ondrias K; Tomaskova Z
    Biochem Biophys Res Commun; 2013 May; 434(4):836-40. PubMed ID: 23611782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Diazoxide-induced mitochondrial swelling in the rat myometrium as a consequence of the activation of the mitochondrial ATP-sensitive (K+)-channel].
    Vadziuk OB; Kosterin SA
    Ukr Biokhim Zh (1999); 2008; 80(5):45-51. PubMed ID: 19248617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.