BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22590992)

  • 1. Completely superhydrophobic PDMS surfaces for microfluidics.
    Tropmann A; Tanguy L; Koltay P; Zengerle R; Riegger L
    Langmuir; 2012 Jun; 28(22):8292-5. PubMed ID: 22590992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.
    Yong J; Chen F; Yang Q; Zhang D; Bian H; Du G; Si J; Meng X; Hou X
    Langmuir; 2013 Mar; 29(10):3274-9. PubMed ID: 23391207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces.
    Lee EJ; Jung CH; Hwang IT; Choi JH; Cho SO; Nho YC
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2988-93. PubMed ID: 21776956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-equilibrium hybrid organic plasma processing for superhydrophobic PTFE surface towards potential bio-interface applications.
    Vijayan VM; Tucker BS; Baker PA; Vohra YK; Thomas V
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110463. PubMed ID: 31493629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irradiation of poly(tetrafluoroethylene) surfaces by CF4 plasma to achieve robust superhydrophobic and enhanced oleophilic properties for biological applications.
    Salapare HS; Suarez BA; Cosiñero HS; Bacaoco MY; Ramos HJ
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():270-5. PubMed ID: 25491987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis.
    Vandencasteele N; Broze B; Collette S; De Vos C; Viville P; Lazzaroni R; Reniers F
    Langmuir; 2010 Nov; 26(21):16503-9. PubMed ID: 20973585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.
    Wang H; Zhao J; Zhu Y; Meng Y; Zhu Y
    J Colloid Interface Sci; 2013 Jul; 402():253-8. PubMed ID: 23642807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
    Stanton MM; Ducker RE; MacDonald JC; Lambert CR; McGimpsey WG
    J Colloid Interface Sci; 2012 Feb; 367(1):502-8. PubMed ID: 22129630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemical modification of poly(dimethylsiloxane)-based biomimetic materials: oil-repellent surfaces.
    Ghosh N; Bajoria A; Vaidya AA
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2636-44. PubMed ID: 20356137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic superhydrophobic and highly oleophobic cotton textiles.
    Hoefnagels HF; Wu D; de With G; Ming W
    Langmuir; 2007 Dec; 23(26):13158-63. PubMed ID: 17985939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA; Caulum MM; Henry CS
    Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces.
    Salapare HS; Guittard F; Noblin X; Taffin de Givenchy E; Celestini F; Ramos HJ
    J Colloid Interface Sci; 2013 Apr; 396():287-92. PubMed ID: 23403114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple coating method of PDMS microchip with PTFE for synthesis of dexamethasone-encapsulated PLGA nanoparticles.
    Mahmoodi Z; Mohammadnejad J; Razavi Bazaz S; Abouei Mehrizi A; Ghiass MA; Saidijam M; Dinarvand R; Ebrahimi Warkiani M; Soleimani M
    Drug Deliv Transl Res; 2019 Jun; 9(3):707-720. PubMed ID: 30949939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions.
    Fiddes LK; Raz N; Srigunapalan S; Tumarkan E; Simmons CA; Wheeler AR; Kumacheva E
    Biomaterials; 2010 May; 31(13):3459-64. PubMed ID: 20167361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonfunctionalized polydimethyl siloxane superhydrophobic surfaces based on hydrophobic-hydrophilic interactions.
    Polizos G; Tuncer E; Qiu X; Aytuǧ T; Kidder MK; Messman JM; Sauers I
    Langmuir; 2011 Mar; 27(6):2953-7. PubMed ID: 21294505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces.
    Chen IJ; Lindner E
    Langmuir; 2007 Mar; 23(6):3118-22. PubMed ID: 17279784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of PTFE surface to increase its blood compatibility.
    Onder S; Kazmanli K; Kok FN
    J Biomater Sci Polym Ed; 2011; 22(11):1443-57. PubMed ID: 20594420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.