These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22591186)

  • 1. Isolation of template effects that control the structure and function of nonspherical, biotemplated Pd nanomaterials.
    Bhandari R; Knecht MR
    Langmuir; 2012 May; 28(21):8110-9. PubMed ID: 22591186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining peptide sequence effects that control the size, structure, and function of nanoparticles.
    Coppage R; Slocik JM; Briggs BD; Frenkel AI; Naik RR; Knecht MR
    ACS Nano; 2012 Feb; 6(2):1625-36. PubMed ID: 22276921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction.
    Pacardo DB; Sethi M; Jones SE; Naik RR; Knecht MR
    ACS Nano; 2009 May; 3(5):1288-96. PubMed ID: 19422199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts.
    Pacardo DB; Slocik JM; Kirk KC; Naik RR; Knecht MR
    Nanoscale; 2011 May; 3(5):2194-201. PubMed ID: 21455527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality.
    Ramezani-Dakhel H; Mirau PA; Naik RR; Knecht MR; Heinz H
    Phys Chem Chem Phys; 2013 Apr; 15(15):5488-92. PubMed ID: 23474536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of peptide-directed palladium surface structure for biologically tunable nanocatalysts.
    Bedford NM; Ramezani-Dakhel H; Slocik JM; Briggs BD; Ren Y; Frenkel AI; Petkov V; Heinz H; Naik RR; Knecht MR
    ACS Nano; 2015 May; 9(5):5082-92. PubMed ID: 25905675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C-C coupling chemistry.
    Guerra J; Herrero MA
    Nanoscale; 2010 Aug; 2(8):1390-400. PubMed ID: 20820722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell.
    Wang Y; Biradar AV; Asefa T
    ChemSusChem; 2012 Jan; 5(1):132-9. PubMed ID: 22095642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size control and catalytic activity of bio-supported palladium nanoparticles.
    Søbjerg LS; Lindhardt AT; Skrydstrup T; Finster K; Meyer RL
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):373-8. PubMed ID: 21481574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates.
    Manocchi AK; Horelik NE; Lee B; Yi H
    Langmuir; 2010 Mar; 26(5):3670-7. PubMed ID: 19919039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting localized surface binding effects to enhance the catalytic reactivity of peptide-capped nanoparticles.
    Coppage R; Slocik JM; Ramezani-Dakhel H; Bedford NM; Heinz H; Naik RR; Knecht MR
    J Am Chem Soc; 2013 Jul; 135(30):11048-54. PubMed ID: 23865951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures.
    Wei J; Chen X; Shi S; Mo S; Zheng N
    Nanoscale; 2015 Dec; 7(45):19018-26. PubMed ID: 26515167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biomimetic nanosystems and novel composite nanobiomaterials].
    Khomutov GB
    Biofizika; 2011; 56(5):881-98. PubMed ID: 22117446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic recognition controls peptide binding for bio-based nanomaterials.
    Coppage R; Slocik JM; Briggs BD; Frenkel AI; Heinz H; Naik RR; Knecht MR
    J Am Chem Soc; 2011 Aug; 133(32):12346-9. PubMed ID: 21774561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile synthesis-fabrication strategy for integration of catalytically active viral-palladium nanostructures into polymeric hydrogel microparticles via replica molding.
    Yang C; Choi CH; Lee CS; Yi H
    ACS Nano; 2013 Jun; 7(6):5032-44. PubMed ID: 23701179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band.
    Shin JY; Lee BS; Jung Y; Kim SJ; Lee SG
    Chem Commun (Camb); 2007 Dec; (48):5238-40. PubMed ID: 18060154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide.
    Chiu CY; Li Y; Huang Y
    Nanoscale; 2010 Jun; 2(6):927-30. PubMed ID: 20648291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conversation with Prof. Angela Belcher: leader in biotemplated nanomaterials. Interview by Paul S Weiss.
    Belcher A
    ACS Nano; 2008 Aug; 2(8):1508-13. PubMed ID: 19206352
    [No Abstract]   [Full Text] [Related]  

  • 20. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.