These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22591301)

  • 1. Stem cells and spinal cord repair.
    Snyder EY; Teng YD
    N Engl J Med; 2012 May; 366(20):1940-2. PubMed ID: 22591301
    [No Abstract]   [Full Text] [Related]  

  • 2. Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury.
    Yamamoto A; Sakai K; Matsubara K; Kano F; Ueda M
    Neurosci Res; 2014 Jan; 78():16-20. PubMed ID: 24252618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms.
    Sakai K; Yamamoto A; Matsubara K; Nakamura S; Naruse M; Yamagata M; Sakamoto K; Tauchi R; Wakao N; Imagama S; Hibi H; Kadomatsu K; Ishiguro N; Ueda M
    J Clin Invest; 2012 Jan; 122(1):80-90. PubMed ID: 22133879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New therapy for spinal cord injury shows positive results in rodent model.
    Regen Med; 2011 Mar; 6(2):142-3. PubMed ID: 21513086
    [No Abstract]   [Full Text] [Related]  

  • 5. Potential of human dental stem cells in repairing the complete transection of rat spinal cord.
    Yang C; Li X; Sun L; Guo W; Tian W
    J Neural Eng; 2017 Apr; 14(2):026005. PubMed ID: 28085005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord regeneration using dental stem cell-based therapies.
    Xu Y; Chen M; Zhang T; Ma Y; Chen X; Zhou P; Zhao X; Pang F; Liang W
    Acta Neurobiol Exp (Wars); 2019; 79(4):319-327. PubMed ID: 31885389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adult stem cells for spinal cord injury: what types and how do they work?
    Uccelli A
    Cytotherapy; 2008; 10(6):541-2. PubMed ID: 18836913
    [No Abstract]   [Full Text] [Related]  

  • 9. Gait analysis of spinal cord injured rats after delivery of chondroitinase ABC and adult olfactory mucosa progenitor cell transplantation.
    Huang WC; Kuo WC; Hsu SH; Cheng CH; Liu JC; Cheng H
    Neurosci Lett; 2010 Mar; 472(2):79-84. PubMed ID: 20079803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?
    Ronaghi M; Erceg S; Moreno-Manzano V; Stojkovic M
    Stem Cells; 2010 Jan; 28(1):93-9. PubMed ID: 19904738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The use of adult human bone marrow stem cells in the treatment of spinal injury].
    Fedorko S; Lipina R
    Vnitr Lek; 2009 Mar; 55(3):184-6. PubMed ID: 19378843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cell spinal cord regeneration: first do no harm.
    Legge M; Jones LM
    J Med Ethics; 2008 Dec; 34(12):838-9. PubMed ID: 19043104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced migration of dental pulp stem cells for in vivo pulp regeneration.
    Suzuki T; Lee CH; Chen M; Zhao W; Fu SY; Qi JJ; Chotkowski G; Eisig SB; Wong A; Mao JJ
    J Dent Res; 2011 Aug; 90(8):1013-8. PubMed ID: 21586666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells.
    Pan HC; Cheng FC; Lai SZ; Yang DY; Wang YC; Lee MS
    J Clin Neurosci; 2008 Jun; 15(6):656-64. PubMed ID: 18406145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implanted adult human dental pulp stem cells induce endogenous axon guidance.
    Arthur A; Shi S; Zannettino AC; Fujii N; Gronthos S; Koblar SA
    Stem Cells; 2009 Sep; 27(9):2229-37. PubMed ID: 19544412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of cryopreserved neural stem cells transplantation on rat axonal regeneration after spinal cord injury].
    Wang YF; Lü G; Xu WB; Jin Z; Huang T
    Zhongguo Gu Shang; 2008 Jun; 21(6):427-9. PubMed ID: 19108425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat.
    Bozkurt G; Mothe AJ; Zahir T; Kim H; Shoichet MS; Tator CH
    Neurosurgery; 2010 Dec; 67(6):1733-44. PubMed ID: 21107205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord.
    McDonald JW; Liu XZ; Qu Y; Liu S; Mickey SK; Turetsky D; Gottlieb DI; Choi DW
    Nat Med; 1999 Dec; 5(12):1410-2. PubMed ID: 10581084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Transplantation of neural stem cells into spinal cord after injury].
    Nakamura M; Toyama Y
    Nihon Rinsho; 2003 Mar; 61(3):463-8. PubMed ID: 12701174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.