BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22592311)

  • 1. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.
    Shao Z; Puche AC; Liu S; Shipley MT
    J Neurophysiol; 2012 Aug; 108(3):782-93. PubMed ID: 22592311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraglomerular inhibition maintains mitral cell response contrast across input frequencies.
    Shao Z; Puche AC; Shipley MT
    J Neurophysiol; 2013 Nov; 110(9):2185-91. PubMed ID: 23926045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits.
    Schmidt LJ; Strowbridge BW
    Learn Mem; 2014 Aug; 21(8):406-16. PubMed ID: 25031366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb.
    Isaacson JS; Vitten H
    J Neurosci; 2003 Mar; 23(6):2032-9. PubMed ID: 12657661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.
    Liu S; Shao Z; Puche A; Wachowiak M; Rothermel M; Shipley MT
    J Neurosci; 2015 Apr; 35(14):5680-92. PubMed ID: 25855181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.
    Najac M; Sanz Diez A; Kumar A; Benito N; Charpak S; De Saint Jan D
    J Neurosci; 2015 Mar; 35(10):4319-31. PubMed ID: 25762678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term plasticity in glomerular inhibitory circuits shapes olfactory bulb output.
    Zhou FW; Shao ZY; Shipley MT; Puche AC
    J Neurophysiol; 2020 Mar; 123(3):1120-1132. PubMed ID: 31995427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding.
    Geramita M; Urban NN
    J Neurosci; 2017 Feb; 37(6):1428-1438. PubMed ID: 28028200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.
    Liu S; Shipley MT
    J Neurosci; 2008 Oct; 28(41):10311-22. PubMed ID: 18842890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb.
    Burton SD; Urban NN
    J Neurosci; 2015 Oct; 35(42):14103-22. PubMed ID: 26490853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin increases synaptic activity in olfactory bulb glomeruli.
    Brill J; Shao Z; Puche AC; Wachowiak M; Shipley MT
    J Neurophysiol; 2016 Mar; 115(3):1208-19. PubMed ID: 26655822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.
    Carey RM; Sherwood WE; Shipley MT; Borisyuk A; Wachowiak M
    J Neurophysiol; 2015 May; 113(9):3112-29. PubMed ID: 25717156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal Inhibitory Glomerular Circuits Contribute to Excitation-Inhibition Balance in the Mouse Olfactory Bulb.
    Shao Z; Liu S; Zhou F; Puche AC; Shipley MT
    eNeuro; 2019; 6(3):. PubMed ID: 31147391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells.
    Dong HW; Hayar A; Ennis M
    J Neurosci; 2007 May; 27(21):5654-63. PubMed ID: 17522310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.
    Schoppa NE; Kinzie JM; Sahara Y; Segerson TP; Westbrook GL
    J Neurosci; 1998 Sep; 18(17):6790-802. PubMed ID: 9712650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel processing of afferent olfactory sensory information.
    Vaaga CE; Westbrook GL
    J Physiol; 2016 Nov; 594(22):6715-6732. PubMed ID: 27377344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interglomerular lateral inhibition targeted on external tufted cells in the olfactory bulb.
    Whitesell JD; Sorensen KA; Jarvie BC; Hentges ST; Schoppa NE
    J Neurosci; 2013 Jan; 33(4):1552-63. PubMed ID: 23345229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells.
    Liu S; Plachez C; Shao Z; Puche A; Shipley MT
    J Neurosci; 2013 Feb; 33(7):2916-26. PubMed ID: 23407950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.